Advertisement

Journal of Ornithology

, Volume 153, Issue 2, pp 525–533 | Cite as

Effects of landscape, conspecifics and heterospecifics on habitat selection by breeding farmland birds: the case of the Calandra Lark (Melanocorypha calandra) and Corn Bunting (Emberiza calandra)

  • Miguel A. Sanza
  • Juan Traba
  • Manuel B. Morales
  • Desirée Rivera
  • M. Paula  Delgado
Original Article

Abstract

The aim of habitat selection studies is to understand the effect of the different factors affecting the spatial distribution of individuals. Within this framework, the aim of this study was to evaluate the relative contributions of landscape features and conspecific and heterospecific interactions to habitat selection by two sympatric species, the Calandra Lark Melanocorypha calandra and the Corn Bunting Emberiza calandra, during the breeding season. During the 2008 breeding season, the population of both species was censused in three Central Spanish locations by means of transects (N = 58). A model-averaging approach was used to determine the weight and effect of landscape and interaction variables in each species’ habitat selection using abundance as the dependent variable. Deviance partitioning was used to determine the unique and shared contributions of these two sets of variables to the variation explained by the models. Calandra Lark was positively associated with mean field size, which reflects its preference for relatively simplified landscapes with a low density of field margins and, consequently, small land-use diversity. Corn Bunting selected areas with high land-use diversity, namely, a highly heterogeneous landscape with a high density of field margins. Attraction between conspecifics was found in both cases. Calandra Lark seems to negatively respond to the proximity of Corn Buntings, which indicates a partitioning of space and food resources. However, Corn Bunting responded positively to the proximity of Calandra Larks, which reflects a higher tolerance of Corn Buntings to the presence of other species nearby. Deviance partitioning showed that interactions were more important for Calandra Lark, while Corn Bunting was equally affected by both components. An appropriate management should combine the requirements of both species to achieve effective conservation at the bird assemblage level.

Keywords

Agricultural landscape Model averaging Steppe birds Spain Variance partitioning 

Zusammenfassung

Die Auswirkungen von Landschaftstyp, sowie Präsenz von Artgenossen und Andersartigen auf die Habitatwahl brütender Offenlandarten am Beispiel der Kalanderlerche ( Melanocorypha calandra ) und der Grauammer ( Emberiza calandra )

Studien zur Habitatwahl untersuchen die Wirkung verschiedener Faktoren auf die räumliche Verteilung von Individuen. Diese Studie befasst sich mit dem relativen Einfluss verschiedener Landschaftstypen, sowie der Wechselbeziehung mit gleichartigen und andersartigen Vögeln, auf die Habitatwahl zweier sympatrischer Arten, der Kalanderlerche und der Grauammer. Während der Brutsaison 2008 wurde die Populationsgröße beider Arten in drei zentralspanischen Gebieten in 58 Transekten erhoben. Durch Model-Averaging wurde die Auswirkung und Gewichtung der Landschafts- und Interaktions-Variablen in der Habitatwahl der beiden Arten bestimmt, wobei Populationsgröße als abhängige Variable benutzt wurde. Anhand von Deviance Partition wurden die einzigartigen und gemeinsamen Beiträge dieser beiden Variablensets an der Variation, die durch das Modell erklärt wurde, bestimmt. Die Habitatwahl der Kalanderlärche hing positiv mit der mittleren Feldgröße zusammen, was auf eine Vorliebe für relativ einfache Landschaften mit geringer Dichte von Ackergrenzen und demzufolge einheitlicher Landnutzung hindeutet. Grauammern wählten Gebiete mit großer Vielfalt in der Landnutzung, d. h. sehr heterogene Landschaften mit hoher Dichte von Ackergrenzen. In beiden Arten zogen Artgenossen einander an. Die Kalanderlerche schien negativ auf die Nähe der Grauammer zu reagieren, die eine Konkurrenz für Lebensraum und Futter darstellt. Andererseits reagierte die Grauammer positiv auf das Vorkommen von Kalanerlerchen. Dies deutet auf eine höhere Toleranz der Grauammer auf die Nähe anderer Arten hin. Deviance Partition zeigte, dass Interaktionen mit anderen Vögeln mehr Einfluss auf die Habitatwahl von Kalanderlärchen haben, während die Grauammer von beiden getesteten Komponenten gleichermaßen beeinflusst wurde. Um einen effektiven Schutz der Vogelgemeinschaft zu gewährleisten, sollten daher die Bedürfnisse beider Arten in Schutzmaßahmen berücksichtigt werden.

Notes

Acknowledgments

This work derives from M.Sc. studies at the UAM Master in Ecology by M.A.S. T. Pärt, P. Donald, P. Acebes, I. Guerrero, J. Seoane and C.P. Carmona also provided constructive comments and helped with the statistical analysis. The study is a contribution to the CGL/2009/13029/BOS project, financed by the Spanish Ministry of Science, and to the REMEDINAL S-2009/AMB 1783 project of the Comunidad de Madrid.

References

  1. Abramsky Z, Rosenzweig ML, Subach A (2002) Measuring the benefit of habitat selection. Behav Ecol 13:497–502CrossRefGoogle Scholar
  2. Ahlering MA, Johnson DH, Faaborg J (2006) Conspecific attraction in a grassland bird, the baird’s sparrow. J Field Ornithol 77:365–371CrossRefGoogle Scholar
  3. Barton K (2011) MuMIn: Multi-model inference. R package version 1.0.0. Available at: http://CRAN.R-project.org/package=MuMIn
  4. Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18:182–188CrossRefGoogle Scholar
  5. Brambilla M, Guidali F, Negri I (2009) Breeding-season habitat associations of the declining Corn Bunting Emberiza calandra—a potential indicator of the overall bunting richness. Ornis Fennica 86:41–50Google Scholar
  6. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practice information-theoretic approach. Springer, New YorkGoogle Scholar
  7. Carrascal LM, Palomino D (2008) Tamaño de población de las aves comunes reproductoras en España en 2004–2006. SEO/BirdLife, MadridGoogle Scholar
  8. Carrascal LM, Palomino D, Lobo JM (2002) Patrones de preferencias de hábitat y de distribución y abundancia invernal de aves en el centro de España. Análisis y predicción del efecto de factores ecológicos. Anim Biodivers Conserv 25:7–40Google Scholar
  9. Carrascal LM, Seoane J, Palomino D (2008) Bias in density estimations using strip transects in dry open-country environments in the Canary Islands. Anim Biodivers Conserv 31:45–50Google Scholar
  10. Chamberlain DE, Fuller RJ, Bunce RGH, Duckworth JC, Shrubb M (2000) Changes in the abundance of farmland birds in relation to the timing of agricultural intensification in England and Wales. J Appl Ecol 37:771–788CrossRefGoogle Scholar
  11. Cramp S (ed) (1988) The birds of the Western Palearctic, vol 5. Oxford University Press, OxfordGoogle Scholar
  12. Cramp S, Perrins CM (eds) (1994) The birds of the Western Palearctic, vol. 9. Oxford University Press, OxfordGoogle Scholar
  13. Danielson BJ, Gaines MS (1987) The influences of conspecific and heterospecific residents on colonization. Ecology 68:1778–1784CrossRefGoogle Scholar
  14. De Juana E, Suárez F, Ryan PG (2004) Family Alaudidae (Larks). In: del Hoyo J, Elliott A, Christie D (eds) Handbook of the birds of the world, vol 9. Lynx Edicions, Barcelona, pp 496–568Google Scholar
  15. Delgado MP (2009) Análisis de la selección de hábitat del sisón común (Tetrax tetrax) a diferentes escalas espaciales: del nicho fundamental al nicho realizado. PhD thesis. University Autónoma de Madrid, MadridGoogle Scholar
  16. Delgado MP, Morales MB, Traba J, García de la Morena EL (2009) Determining the effects of habitat management and climate on the population trends of a declining steppe birds. Ibis 151:440–451CrossRefGoogle Scholar
  17. Díaz M, Martí R, Gómez-Manzaneque A, Sánchez A (eds) (1994) Atlas de las aves nidificantes de Madrid. Agencia de Medio Ambiente de la Comunidad de Madrid-SEO/BirdLife, MadridGoogle Scholar
  18. Donald PF, Aebischer NJ (eds) (1997) The ecology and conservation of corn buntings Milaria calandra. Joint Nature Conservation Committee, PeterboroughGoogle Scholar
  19. Donald PF, Green RE, Heath MF (2001a) Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc R Soc Lond B 268:25–29CrossRefGoogle Scholar
  20. Donald PF, Buckingham DL, Moorcroft D, Muirhead LB, Evans AD, Kirby WB (2001b) Habitat use and diet of skylarks Alauda arvensis wintering on lowland farmland in southern Britain. J Appl Ecol 38:536–547CrossRefGoogle Scholar
  21. ESRI (2008) ArcGIS desktop 9.2. Environmental Systems Research Institute, RedlandsGoogle Scholar
  22. Forstmeier W, Bourski O, Leisler B (2001) Habitat choice in Phylloscopus warblers: the role of morphology, phylogeny and competition. Oecologia 128:566–576CrossRefGoogle Scholar
  23. Fox T, Heldbjerg H (2008) Which regional features of Danish agriculture favour the corn bunting in the contemporary farming landscape? Agric Ecosyst Environ 126:261–269CrossRefGoogle Scholar
  24. Fretwell SD, Lucas HL Jr (1970) On territorial behavior and other factors influencing habitat distribution in birds. Acta Biotheor 14:16–36Google Scholar
  25. Geiger F, Bengtsson J, Berendse F, Weisser WW, Emmerson M, Morales MB et al (2010) Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl Ecol 11:97–105CrossRefGoogle Scholar
  26. Gillings S, Watts PN (1997) Habitat selection and breeding ecology of corn buntings Miliaria calandra in the Lincolnshire fens. In: Donald P, Aebischer N (eds) The ecology and conservation of corn buntings Miliaria calandra. Joint Nature Conservation Committee, Peterborough, pp 139–150Google Scholar
  27. Grant PR, Grant BR (2006) Evolution of character displacement in Darwin’s Finches. Science 313:224–226PubMedCrossRefGoogle Scholar
  28. Gray TNE, Chamnan H, Collar NJ, Dolman PM (2009) Sex-specific habitat use within leks: conservation implications for the critically endangered Bengal florican (Houbraopsis bengalensis) in an intensifiying agro-ecosystem. Auk 126:112–122CrossRefGoogle Scholar
  29. Guerrero I, Martínez P, Morales MB, Oñate JJ (2010) Influence of agricultural factors on weed, carabid and bird richness in a Mediterranean cereal cropping system. Agric Ecosyst Environ 138:103–108CrossRefGoogle Scholar
  30. Hartley IR, Shepherd M (1997) The behavioural ecology of corn buntings Miliaria calandra on North Uist. In: Donald P, Aebischer N (eds) The ecology and conservation of corn buntings Miliaria calandra. Joint Nature Conservation Committee, Peterborough, pp 139–150Google Scholar
  31. Järvinen O, Väisänen RA (1975) Estimating relative densities of breeding birds by line transect method. Oikos 26:316–322CrossRefGoogle Scholar
  32. Leitão PJ, Moreira F, Osborne PE (2010) Breeding habitat selection by steppe birds in Castro Verde: a remote sensing and advanced statistics approach. Ardeola 57(Special):93–110Google Scholar
  33. Lima SL, Zollner PA (1996) Towards a behavioral ecology of ecological landscapes. Trends Ecol Evol 11:131–135PubMedCrossRefGoogle Scholar
  34. Mañosa S, Estrada J, Folch A, Orta J, González-Prat F, Bonfil J (1996) Bird–habitat relationships in the catalan steppes. In: Fernández Gutiérrez J, Sanz-Zuasti J (eds) Conservación de las aves esteparias y su Hábitat. Junta de Castilla y León, Valladolid, pp 153–160Google Scholar
  35. Martin TE (2001) Abiotic vs. biotic influences on habitat selection of coexisting species: climate change impacts? Ecology 82:175–188CrossRefGoogle Scholar
  36. McMahon BJ, Giralt D, Raurell M, Brotons L, Bota G (2010) Identifying set-asides features for bird conservation and management in north-eastern Iberian pseudo-steppes. Bird Study 57:289–300CrossRefGoogle Scholar
  37. Moreira F, Beja P, Morgado R, Reino L, Gordinho L, Delgado A, Borralho R (2005) Effects of field management and landscape context on grassland wintering birds in southern Portugal. Agric Ecosyst Environ 109:59–74CrossRefGoogle Scholar
  38. Moreno V, Morales MB, Traba J (2010) Avoiding over-implementation of agri-environmental schemes for steppe bird conservation: a species-focused proposal based on specialist criteria. J Environ Manage 91:1802–1809PubMedCrossRefGoogle Scholar
  39. Morgado R, Beja P, Reino L, Gordinho L, Delgado A, Borralho R, Moreira F (2010) Calandra Lark habitat selection: strong fragmentation effects in a grassland specialist. Acta Oecol 36:63–73CrossRefGoogle Scholar
  40. Morris DW (1999) Has the ghost of competition passed? Evol Ecol Res 1:3–20Google Scholar
  41. Morris DW (2003) Toward an ecological synthesis: a case for habitat selection. Oecologia 136:1–13PubMedCrossRefGoogle Scholar
  42. Morris DW, Davidson DL (2000) Optimally foraging mice match patch use with habitat differences in fitness. Ecology 81:2061–2066CrossRefGoogle Scholar
  43. Oñate JJ, Andersen E, Peco B, Primdahl J (2000) Agrienvironmental schemes and the European agricultural landscapes: the role of indicators as valuing tools for evaluation. Landsc Ecol 3:271–280CrossRefGoogle Scholar
  44. Peco B, Malo JE, Oñate JJ, Suárez F, Sumpsi JM (1999) Agri-environmental indicators for extensive land-use systems in the Iberian Peninsula. In: Brouwer F, Crabtree R (eds) Agriculture and environment in Europe: the role of indicators in agricultural policy development. CAB International, La HayaGoogle Scholar
  45. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, CambridgeGoogle Scholar
  46. R Development Core Team (2011) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. Available at: http://www.R-project.org/
  47. Reino L, Beja P, Osborne PE, Morgado R, Fabiao R, Rotenberry JT (2009) Distance to edges, edge contrast and landscape fragmentation: Interactions affecting farmland birds around forest plantations. Biol Conserv 142:824–838CrossRefGoogle Scholar
  48. Reino L, Porto M, Morgado R, Moreira F, Fabião A, Santana J, Delgado A, Gordinho L, Cal J, Beja P (2010) Effects of changed grazing regimes and habitat fragmentation on Mediterranean grassland birds. Agric Ecosyst Environ 138:27–34CrossRefGoogle Scholar
  49. Rosenzweig ML (1981) A theory of habitat selection. Ecology 62:327–335CrossRefGoogle Scholar
  50. Senar JC, Borras A (2004) Sobrevivir al invierno: estrategias de las aves invernantes en la Península Ibérica. Ardeola 51:133–168Google Scholar
  51. Serrano D, Astrain C (2005) Microhabitat use and segregation of two sibling species of Calandrella larks during the breeding season: conservation and management strategies. Biol Conserv 125:391–397CrossRefGoogle Scholar
  52. Siegel AF, Morgan CJ (1996) Statistics and data analysis, 2nd edn. Wiley, New YorkGoogle Scholar
  53. Suárez F, Garza V, Morales MB (2002) Habitat use of two sibling species, the short-toed Calandrella brachydactyla and the lesser short-toed C. rufescens larks, in mainland Spain. Ardeola 49:259–272Google Scholar
  54. Tabachnick B, Fidell L (1996) Using multivariate statistics. Harper Collins, New YorkGoogle Scholar
  55. Taylor AJ, O’Halloran J (2002) The decline of the corn bunting Miliaria calandra, in the Republic of Ireland. Proc R Ir Acad B 102B:165–175CrossRefGoogle Scholar
  56. Traba J, García de la Morena EL, Morales MB, Suárez F (2007) Determining high value areas for steppe birds in Spain. Hot spots, complementarity and the efficiency of protected areas. Biodivers Conserv 16:3255–3275CrossRefGoogle Scholar
  57. Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York. Available at: http://www.stats.ox.ac.uk/pub/MASS4
  58. Whittingham MJ, Evans KL (2004) The effects of habitat structure on predation risk of birds in agricultural landscapes. Ibis 146:210–220CrossRefGoogle Scholar
  59. Whittingham MJ, Swetnam RD, Wilson JD, Chamberlain DE, Freckleton RP (2005) Habitat selection by yellowhammers Emberiza citrinella on lowland farmland at two spatial scales: implications for conservation management. J Appl Ecol 42:270–280CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2011

Authors and Affiliations

  • Miguel A. Sanza
    • 1
    • 2
  • Juan Traba
    • 1
  • Manuel B. Morales
    • 1
  • Desirée Rivera
    • 1
  • M. Paula  Delgado
    • 1
  1. 1.Terrestrial Ecology Group (TEG), Department of EcologyUniversidad Autónoma de MadridMadridSpain
  2. 2.Doñana Biological Station CSICSevilleSpain

Personalised recommendations