Journal of Ornithology

, Volume 153, Issue 2, pp 421–430 | Cite as

Demography and population ecology of the Hadeda Ibis (Bostrychia hagedash) at its expanding range edge in South Africa

  • Gregory Duncan Duckworth
  • Res Altwegg
  • Douglas Michael Harebottle
Original Article

Abstract

A mechanistic understanding of species’ geographic range dynamics requires an understanding of the dynamics of populations at the edge of that range. Several ibis species are currently expanding their ranges, and the Hadeda Ibis (Bostrychia hagedash) has increased its southern African range more than 2.5 fold over the past century. We studied the demography of a Hadeda population near the expanding range edge. Estimating survival on a quarterly time interval we found that it was lowest over the first 3 months of life, and then slightly higher over the rest of the 1st year (annual survival: 0.27, SE = 0.04). After the first year, survival was constant (0.75, SE = 0.09). Breeding success increased from 1.5 to 3 fledglings per year with increasing experience of the breeding pair. A matrix population model showed that the growth rate of this population was most sensitive to changes in adult survival and least sensitive to variation in reproduction. Hadedas in our study population thus showed characteristics of long-lived birds but were also able to achieve a high reproductive output in good conditions. Together with their ability to take advantage of a human modified landscape, this may explain the remarkable success of this species in expanding its range.

Keywords

Capture-mark-resighting Hadeda Ibis Matrix population model Range expansion Reproduction Survival 

Zusammenfassung

Demographie und Populationsökologie des Hagedadsch-Ibises (Bostrychia hagedash) an der Front seines expandierenden Verbreitungsgebietes in Südafrika

Für ein mechanistisches Verständnis der Dynamik von Verbreitungsgebieten braucht es Kenntnis der Dynamik von Populationen am Rande des Verbreitungsgebietes. Mehrere Ibis-Arten erweitern momentan ihr Verbreitungsgebiet und das des Hagedasch-Ibises (Bostrychia hagedash) hat sich in Südafrika im Laufe der letzten hundert Jahre um das 2.5 fache vergrößert. Wir untersuchten die Demographie einer Hagedaschpopulation am Rande des Verbreitungsgebietes. Die Überlebensrate je Quartal ist in den ersten drei Lebensmonaten am niedrigsten; für das gesamte 1. Lebensjahr beträgt sie 0,27 ± 0.04 (s.e.). Nach dem ersten Lebensjahr war die Überlebensrate altersunabhängig 0,75 ± 0.09. Mit wachsender Erfahrung des Brutpaares erhöhte sich der Bruterfolg von 1.5 flüggen Jungen pro Jahr auf 3. Ein Matrix- Populationsmodell zeigte, dass die Wachstumsrate dieser Population am empfindlichsten auf Veränderungen in der Überlebensrate von erwachsenen Vögeln reagiert und am wenigsten empfindlich auf Veränderungen im Bruterfolg ist. Der Hagedasch in unserem Studiengebiet zeigte deshalb Eigenschaften von langlebigen Vögeln, war aber auch in der Lage, gute Bedingungen durch hohen Bruterfolg auszunutzen. Diese Eigenschaften, zusammen mit der Fähigkeit, von Menschen veränderte Landschaften auszunutzen, könnten den beachtlichen Erfolg dieser Art in der Ausdehnung ihres Verbreitungsgebietes erklären.

Supplementary material

10336_2011_758_MOESM1_ESM.docx (34 kb)
Supplementary material 1 (DOCX 33 kb)

References

  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723CrossRefGoogle Scholar
  2. Altwegg R, Anderson MD (2009) Rainfall in arid zones: possible effects of climate change on the population ecology of blue cranes. Funct Ecol 23:1014–1021. doi:10.1111/j.1365-2435.2009.01563.x CrossRefGoogle Scholar
  3. Altwegg R, Schaub M, Roulin A (2007) Age-specific fitness components and their temporal variation in the barn owl. Am Nat 169:47–61PubMedCrossRefGoogle Scholar
  4. Bahn V, O’Conner RJ, Krohn WB (2006) Effect of dispersal at range edges on the structure of species ranges. Oikos 155:89–96CrossRefGoogle Scholar
  5. Balkiz Ö, Béchet A, Rouan L, Choquet R, Germain C, Amat JA, Rendón-Martos M, Baccetti N, Nissardi S, Özesmi U, Pradel R (2010) Experience-dependent natal philopatry of breeding Greater flamingos. J Anim Ecol 79:1045–1056PubMedCrossRefGoogle Scholar
  6. Bates D, Maechler M (2010) lme4: linear mixed-effects models using S4 classes. R package version 0.999375-37. http://CRAN.R-project.org/package=lme4
  7. Bauchau V, Horn H, Overdijk O (1998) Survival of spoonbills on Wadden Sea Island. J Avian Biol 29:177–182CrossRefGoogle Scholar
  8. Case TJ, Taper ML (2000) Interspecific competition, environmental gradients, gene flow, and the coevolution of species borders. Am Nat 155:583–605PubMedCrossRefGoogle Scholar
  9. Caswell H (2001) Matrix population models, 2nd edn. Sinauer, Sunderland, MAGoogle Scholar
  10. Cézilly F (1997) Demographic studies of wading birds: an overview. Colon Waterbirds 20:121–128CrossRefGoogle Scholar
  11. Cézilly F, Viallefont A, Boy V, Johnson AR (1996) Annual variation in survival and breeding probability in greater flamingos. Ecology 77:1143–1150CrossRefGoogle Scholar
  12. Choquet R, Lebreton J-D, Gimenez O, Reboulet A-M, Pradel R (2009) U-CARE: utilities for performing goodness of fit tests and manipulating CApture–REcaputre data. Ecography 32:1071–1074CrossRefGoogle Scholar
  13. Clergeau P, Yesou P (2006) Behavioural flexibility and numerous potential sources of introduction for the sacred ibis: causes of concern in western Europe. Biol Invasions 8:1381–1388CrossRefGoogle Scholar
  14. Cormack RM (1964) Estimates of survival from the sighting of marked animals. Biometrika 51:429–438Google Scholar
  15. Curio E (1983) Why do young birds reproduce less well? Ibis 125:400–404CrossRefGoogle Scholar
  16. D’Amico F, Hémery G (2007) Time-activity budgets and energetics of dipper Cinclus cinclus are dictated by temporal variability of river flow. Comp Biochem Physiol Part A Mol Integr Physiol 148:811–820CrossRefGoogle Scholar
  17. Duckworth GD, Altwegg R, Guo D (2010) Soil moisture limits foraging: a possible mechanism for the range dynamics of the Hadeda Ibis in southern Africa. Div Distr 16:765–772CrossRefGoogle Scholar
  18. Forslund P, Pärt T (1995) Age and reproduction in birds—hypotheses and tests. Trends Ecol Evol 10:374–378Google Scholar
  19. Gaston K (2009) Geographic range limits: achieving synthesis. Proc R Soc B 276:1395–1406PubMedCrossRefGoogle Scholar
  20. Green JA, Boyd IL, Woakes AJ, Warren NL, Butler PJ (2009) Evaluating the prudence of parents: daily energy expenditure throughout the annual cycle of a free-ranging bird, the macaroni penguin Eudyptes chrysolophus. J Avian Biol 40:529–538CrossRefGoogle Scholar
  21. Hafner H, Kayser Y, Boy V, Fasola M, Julliard A-C, Pradel R, Cézilly F (1998) Local survival, natal dispersal, and recruitment in little egrets Egretta garzetta. J Avian Biol 29:216–227CrossRefGoogle Scholar
  22. Hargrove JW, Borland CH (1994) Pooled population parameter estimates from mark-recapture data. Biometrics 50:1129–1141PubMedCrossRefGoogle Scholar
  23. Harrison JA, Allan DG, Underhill LG, Herremans M, Tree AJ, Parker V, Brown CJ (eds) (1997) The atlas of southern African birds, vol 1: non-passerines. BirdLife South Africa, JohannesburgGoogle Scholar
  24. Holt RD, Keitt TH, Lewis MA, Maurer BA, Taper ML (2005) Theoretical models of species’ borders: single species approaches. Oikos 108:18–27CrossRefGoogle Scholar
  25. Hughes L (2000) Biological consequences of global warming: is the signal already apparent. Trends Ecol Evol 15:56–61CrossRefGoogle Scholar
  26. Hylton RA, Frederick PC, De La Fuente TE, Spalding MG (2006) Effects of nestling health of postfledging survival of wood storks. Condor 108:97–106CrossRefGoogle Scholar
  27. Jepsen JU, Hagen SB, Ims RA, Yoccoz NG (2008) Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: evidence of a recent outbreak range expansion. J Anim Ecol 77:257–264PubMedCrossRefGoogle Scholar
  28. Jolly GM (1965) Explicit estimates from capture-recapture data with both death and immigration-stochastic model. Biometrika 52:225–247PubMedGoogle Scholar
  29. Komdeur J (1996) Influence of age on reproductive performance in the Seychelles warbler. Behav Ecol 7:417–425CrossRefGoogle Scholar
  30. Kot M, Lewis MA, Van der Driessche P (1996) Dispersal data and the spread of invading organisms. Ecology 77:2027–2042CrossRefGoogle Scholar
  31. Kruger AC (2004) Climate of South Africa. Climate regions. WS45. South African Weather Service, PretoriaGoogle Scholar
  32. Lack D (1968) Ecological adaptations for breeding in birds. Methuen, LondonGoogle Scholar
  33. Lebreton JD, Pradel R (2002) Multistate recapture models: modelling incomplete individual histories. J Appl Stat 29:353–369CrossRefGoogle Scholar
  34. Lebreton J-D, Burnham KP, Clobert J, Anderson DR (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol Monogr 62:67–118CrossRefGoogle Scholar
  35. Li X, Li D (1998) Current state and the future of the crested ibis (Nipponia nippon): a case study by population viability analysis. Ecol Res 13:323–333CrossRefGoogle Scholar
  36. Limmer B, Becker PH (2010) Improvement of reproductive performance with age and breeding experience depends on recruitment age in a long-lived seabird. Oikos 119:500–507CrossRefGoogle Scholar
  37. Macdonald IAW, Richardson DM, Powrie FJ (1986) Range expansion of the Hadeda Ibis Bostrychia hagedash in southern Africa. South Afr J Zool 21:331–342Google Scholar
  38. Martin JM, French K, Major RE (2007) The pest status of Australian white ibis (Threskiornis molucca) in urban situations and the effectiveness of egg-oil in reproductive control. Wildl Res 34:319–324CrossRefGoogle Scholar
  39. Martin J, French K, Major R (2010) Population and breeding trends of an urban coloniser: the Australian white ibis. Wildl Res 37:230–239CrossRefGoogle Scholar
  40. Newton I (1989) Lifetime reproduction in birds. Academic Press, LondonGoogle Scholar
  41. North PM (1979) Relating grey heron survival rates to winter weather conditions. Bird Study 26:23–28CrossRefGoogle Scholar
  42. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42PubMedCrossRefGoogle Scholar
  43. Patten MA, Lasley GW (2000) Range expansion of the Glossy Ibis in North America. North Am Birds 54:241–247Google Scholar
  44. R Development Core Team (2010) R: A language and environment for statistical computing, 2.12.0 edn. R Foundation for Statistical Computing, ViennaGoogle Scholar
  45. Reid JM, Bignal EM, Bignal S, McCracken DI, Monaghan P (2003) Age-specific reproductive performance in red-billed choughs Pyrrhocorax pyrrhocorax: patterns and processes in a natural population. J Anim Ecol 72:765–776CrossRefGoogle Scholar
  46. Ricklefs RE (2000) Density dependence, evolutionary optimization, and the diversification of avian life histories. Condor 102:9–22CrossRefGoogle Scholar
  47. Sæther B-E, Ringsby TH, Røskaft E (1996) Life history variation, population processes and priorities in species conservation: towards a reunion of research paradigms. Oikos 77:217–226CrossRefGoogle Scholar
  48. Sagarin RD, Gaines D (2002) The ‘abundant centre’ distribution: to what extent is it a biogeographical rule? Ecol Lett 5:137–147CrossRefGoogle Scholar
  49. Seber GAF (1962) The multi-sample single recapture census. Biometrika 49:339–350Google Scholar
  50. Skead CJ (1951) A study of the hadedah ibis Hagedashia h. hagedash. Ibis 93:360–382Google Scholar
  51. Spendelow JA, Nichols JD, Nisbet H, Hays GD, Cormons K, Burger C, Safina J, Hines E, Gochfeld M (1995) Estimating annual survival and movement rates of adults within a metapopulation of roseate terns. Ecology 76:2415–2428CrossRefGoogle Scholar
  52. Tavecchia G, Pradel R, Boy V, Johnson AR, Cézilly F (2001) Sex- and age-related variation in survival and cost of first reproduction in greater flamingos. Ecology 82:165–174CrossRefGoogle Scholar
  53. Thomas CD, Lennon JL (1999) Birds extend their ranges northwards. Nature 399:213CrossRefGoogle Scholar
  54. Vaupel JW, Yashin AI (1985) Heterogeneity ruses: some surprising effects of selection on population dynamics. Am Stat 39:176–185PubMedGoogle Scholar
  55. Vernon CJ, Dean WRJ (2005) Hadeda Ibis. In: Hockey PAR, Dean WRJ, Ryan PG (eds) Roberts birds of southern Africa, vol VII. The trustees of the John Voelcker bird book fund, Cape TownGoogle Scholar
  56. White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46:S120–S139CrossRefGoogle Scholar
  57. Whittaker RH (1956) Vegetation of the great smoky mountains. Ecol Monogr 26:1–80CrossRefGoogle Scholar
  58. Williams GC (1966) Natural selection, the costs of reproduction, and a refinement of Lack’s principle. Am Nat 100:687–690CrossRefGoogle Scholar
  59. Zeileis A, Kleiber C, Jackman S (2008) Regression models for count data in R. J Stat Softw 27:1–25Google Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2011

Authors and Affiliations

  • Gregory Duncan Duckworth
    • 1
    • 2
  • Res Altwegg
    • 1
    • 2
  • Douglas Michael Harebottle
    • 2
  1. 1.South African National Biodiversity InstituteClaremontSouth Africa
  2. 2.Animal Demography Unit, Department of ZoologyUniversity of Cape TownRondeboschSouth Africa

Personalised recommendations