Skip to main content

Advertisement

Log in

Spring phenology delays in an insular subtropical songbird: is response to climate change constrained by population size?

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

There is irrefutable evidence that spring phenology of birds, such as the timing of migration and reproduction, is advancing in response to ongoing climate change. However, most of the species and populations have been studied in temperate and northern latitudes, where annual seasonality of temperatures is stronger. Here, singing onset phenology in eight populations of the endemic Japanese bush warbler Cettia diphone riukiuensis from the subtropical Ryukyu and Sakishima Islands (24.3–28.4°N) has been studied for the period 1953–2005. Overall, males are singing 13 days later during the last five decades. Temperature increased in the study sites during the study period and most populations showed a negative effect of temperature before singing season. This apparently contradictory phenological response to climate change may be another evidence of the population declines detected in the endemic species of the small southern islands of Japan as a result of habitat loss and degradation. Patterns in the variability among the studied insular populations further confirmed this hypothesis. Those populations showing the strongest delays were those undergoing the higher increase of human population in their islands. However, this effect was strongly influenced by the island area. Phenology of birds in the smallest islands showed the smallest dependence on temperature, and consequently these populations are unable to adapt their responses to rising temperatures. This relationship is probably mediated by the poor genetic variability expected in the small insular populations. These results suggest that insular populations could be threatened by climate change besides particular threats at local scale suffered by each population.

Zusammenfassung

Verzögerungen in der Frühjahrsphänologie bei einem inselbewohnenden subtropischen Singvogel: ist die Reaktion auf den Klimawandel durch die Populationsgröße eingeschränkt?

Es gibt unwiderlegbare Beweise, dass die Frühjahrsphänologie von Vögeln, wie zum Beispiel das Timing von Zug und Fortpflanzung, als Antwort auf den anhaltenden Klimawandel verfrüht ist. Die meisten Arten und Populationen wurden jedoch in gemäßigten und nördlichen Breiten untersucht, wo die Temperaturen im Jahresverlauf stärker schwanken. Hier haben wir die Gesangsphänologie in acht Populationen des endemischen Japan-Buschsängers Cettia diphone riukiuensis auf den subtropischen Inseln Ryukyu und Sakishima (24.3–28.4°N) zwischen 1953 und 2005 untersucht. Insgesamt begannen Männchen im Verlauf der letzten fünf Jahrzehnte 13 Tage später zu singen. Die Temperatur nahm in den Untersuchungsgebieten im Verlauf der Studie zu, und in den meisten Populationen hatte die Temperatur vor der Gesangssaison einen negativen Effekt. Diese scheinbar widersprüchliche phänologische Reaktion auf den Klimawandel könnte ein weiteres Anzeichen für die Populationsrückgänge sein, die bei den endemischen Arten der kleinen südlichen Inseln Japans als Folge von Habitatverlust und -degradation erfasst worden sind. Auch die Muster in der Variabilität zwischen den untersuchten Inselpopulationen bestätigen diese Hypothese. Diejenigen Populationen, welche die stärksten Verzögerungen aufwiesen, waren die, auf deren Inseln die menschliche Population am stärksten zunahm. Dieser Effekt wurde jedoch stark durch die Inselgröße beeinflusst. Die Phänologie von Vögeln auf den kleinsten Inseln hing am wenigsten von der Temperatur ab, und folglich waren diese Populationen nicht in der Lage, ihre Reaktionen an steigende Temperaturen anzupassen. Diese Beziehung kommt wahrscheinlich durch die geringe genetische Variabilität, die man bei kleinen Inselpopulationen erwartet, zustande. Diese Ergebnisse deuten darauf hin, dass Inselpopulationen durch den Klimawandel bedroht sein könnten, neben spezifischen Gefährdungen auf lokaler Ebene, denen jede Population ausgesetzt ist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Beissinger SR, Osborne DR (1982) Effects of urbanization on avian community organization. Condor 84:75–83

    Article  Google Scholar 

  • Both C, te Marvelde L (2007) Spatial and temporal variation in climate change and their effects on timing of avian breeding and migration throughout Europe. Clim Res 35:93–105

    Article  Google Scholar 

  • Both C, Artemyev AV, Blaauw B, Cowie RJ, Dekhuijzen AJ, Eeva T, Enemar A, Gustafsson L, Ivankina EV, Järvinen A, Metcalfe NB, Nyholm NEI, Potti J, Ravussin PA, Sanz JJ, Silverin B, Slater FM, Sokolov LV, Török J, Winkel W, Wright J, Zang H, Visser ME (2004) Large-scale geographical variation confirms that climate change causes birds to lay earlier. Proc R Soc Lond B 271:1657–1662

    Article  Google Scholar 

  • Both C, Bouwhuis S, Lessells CM, Visser ME (2006) Climate change and population declines in a long-distance migratory bird. Nature 441:81–83

    Article  PubMed  CAS  Google Scholar 

  • Brazil MA (1991) The Birds of Japan. Christopher Helm, London

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference, 2nd edn. Springer, New York

    Google Scholar 

  • Carrascal LM, Galván I, Gordo O (2009) Partial least squares regression as an alternative to current regression methods used in ecology. Oikos 118:681–690

    Article  Google Scholar 

  • Connor EF, Courtney AC, Yoder JM (2000) Individuals-area relationships: the relationship between animal population density and area. Ecology 81:734–748

    Google Scholar 

  • Diamond JM, Ashmole NP, Purves PE (1989) The present, past and future of human-caused extinctions. Philos Trans R Soc Lond B 325:469–477

    Article  CAS  Google Scholar 

  • Doi H (2007) Winter flowering phenology of Japanese apricot Prunus mume reflects climate change across Japan. Clim Res 34:99–104

    Article  Google Scholar 

  • Doi H (2008) Delayed phenological timing of dragonfly emergence in Japan over five decades. Biol Lett 4:388–391

    Article  PubMed  Google Scholar 

  • Doi H, Katano I (2008) Phenological timings of leaf budburst with climate change in Japan. Agric For Meteorol 148:512–516

    Article  Google Scholar 

  • Doi H, Takahashi M (2008) Latitudinal patterns in the phenological responses of leaf colouring and leaf fall to climate change in Japan. Global Ecol Biogeog 17:556–561

    Article  Google Scholar 

  • Doi H, Gordo O, Katano I (2008) Heterogeneous intra-annual climatic changes drive different phenological responses at two trophic levels. Clim Res 36:181–190

    Article  Google Scholar 

  • Doi H, Takahashi M, Katano I (2010) Genetic diversity increases regional variation in phenological dates in response to climate change. Global Change Biol 16:373–379

    Article  Google Scholar 

  • Dunn PO (2004) Breeding dates and reproductive performance. Adv Ecol Res 35:69–87

    Article  Google Scholar 

  • Eguchi K, Amano HE (2008) Indirect influences of the invasive Red-billed Leiothrix on the breeding of the Japanese bush warbler. Jpn J Ornithol 57:3–10

    Article  Google Scholar 

  • Emura N, Deguchi T (2009) Present condition of the avifauna of Mukojima, Ogasawara archipelago, following the eradication of feral goats. Jpn J Ornithol 58:77–85

    Article  Google Scholar 

  • Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10:1500–1508

    Article  Google Scholar 

  • Frankham R (1997) Do island populations have less genetic variation than mainland populations? Heredity 78:311–327

    Article  PubMed  Google Scholar 

  • Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140

    Article  Google Scholar 

  • Gaston AJ, Gilchrist HG, Mallory ML, Smith PA (2009) Changes in seasonal events, peak food availability, and consequent breeding adjustment a marine bird: a case of progressive mismatching. Condor 111:111–119

    Article  Google Scholar 

  • Gienapp P, Leimu R, Merilä J (2007) Responses to climate change in avian migration time—microevolution or phenotypic plasticity? Clim Res 35:25–35

    Article  Google Scholar 

  • Gordo O (2007) Why are bird migration dates shifting? A review of weather and climate effects on avian migratory phenology. Clim Res 35:37–58

    Article  Google Scholar 

  • Gordo O, Sanz JJ (2010) Impact of climate change on plant phenology in Mediterranean ecosystems. Global Change Biol 16:1082–1106

    Article  Google Scholar 

  • Hau M, Perfito N, Moore IT (2008) Timing of breeding in tropical birds: mechanisms and evolutionary implications. Ornitol Neotrop 19:39–59

    Google Scholar 

  • Hua LJ, Ma ZG, Guo WD (2008) The impact of urbanization on air temperature across China. Theor Appl Climatol 93:179–194

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Ishida K (1989) The protection of and research strategy for the populations of Dendrocopos leucotos owstoni and Sapheopipo noguchii. Strix 8:249–260 (in Japanese)

    Google Scholar 

  • Ishida K, Takashi M, Abe S (2006) Ecosystem management for endemic species on Amami Island, a hotspot in the southwest Japanese archipelago. J Ornithol 147:S187

    Google Scholar 

  • Itô Y, Kuniharu M, Ota H (2000) Imminent extinction crisis among the endemic species of the forests of Yanbaru, Okinawa, Japan. Oryx 34:305–316

    Google Scholar 

  • JMA (1985) Guidelines for the observation of phenology, 3rd edn. Japan Meteorological Agency, Tokyo (in Japanese)

    Google Scholar 

  • Karl TR, Diaz HF, Kukla G (1988) Urbanization: its detection and effect in the United States climate record. J Clim 1:1099–1123

    Article  Google Scholar 

  • Kawakami K, Higuchi H (2003) Population trend estimation of three threatened bird species in Japanese rural forests: the Japanese night heron Gorsachius goisagi, goshawk Accipiter gentilis and grey-faced buzzard Butastur indicus. J Yamashina Inst Ornithol 35:19–29

    Article  Google Scholar 

  • Ken S (2003) Population trend, habitat change and conservation of the unique wildlife species on Amami Island, Japan. Global Environ Res 7:79–89

    Google Scholar 

  • Kingsford RT, Watson JEM, Lundquist CJ, Venter O, Hughes L, Johnston EL, Atherton J, Gawel M, Keith DA, Mackey BG, Morley C, Possingham HP, Raynor B, Recher HF, Wilson KA (2009) Major conservation policy issues for biodiversity in Oceania. Conserv Biol 23:834–840

    Article  PubMed  CAS  Google Scholar 

  • Koike S, Higuchi H (2002) Long-term trends in the egg laying date and clutch size of red-cheeked starlings Sturnia philippensis. Ibis 144:150–152

    Article  Google Scholar 

  • Kotaka N, Yasumasa S (2004) The road-kill of the Okinawa rail Gallirallus okinawae. J Yamashina Inst Ornithol 35:134–143 (in Japanese)

    Article  Google Scholar 

  • Kotaka N, Kudaka M, Takehara K, Sato H (2009) Ground use pattern by forest animals and vulnerability toward invasion by Herpestes javanicus to Yambaru, northern Okinawa Island, southern Japan. Jpn J Ornithol 58:28–45

    Article  Google Scholar 

  • Lehikoinen E, Sparks TH (2010) Bird migration. In: Møller AP, Fiedler W, Berthold P (eds) Effects of climate change on birds. Oxford University Press, Oxford, pp 89–112

    Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Mason CF (2006) Avian species richness and numbers in the built environment: can new housing developments be good for birds? Biol Conserv 15:2365–2378

    Article  Google Scholar 

  • Matsumoto K, Ohta T, Irasawa M, Nakamura T (2003) Climate change and extension of the Ginkgo biloba L. growing season in Japan. Global Change Biol 9:1634–1642

    Article  Google Scholar 

  • McWhirter DW, Ikenaga H, Iozawa H, Shoyama M, Takehara K (1996) A check-list of the birds of Okinawa prefecture, with notes on recent status including hypothetical records. Bull Okinawa Prefect Mus 22:33–152

    Google Scholar 

  • Miller-Rushing AJ, Inouye DW, Primack RB (2008a) How well do first flowering dates measure plant responses to climate change? The effects of population size and sampling frequency. J Ecol 96:1289–1296

    Article  Google Scholar 

  • Miller-Rushing AJ, Lloyd-Evans TL, Primack RB, Satzinger P (2008b) Bird migration times, climate change, and changing population sizes. Global Change Biol 14:1959–1972

    Article  Google Scholar 

  • Møller AP, Rubolini D, Lehikoinen E (2008) Populations of migratory bird species that did not show a phenological response to climate change are declining. Proc Natl Acad Sci USA 105:16195–16200

    Article  PubMed  Google Scholar 

  • Ogura G, Sasaki T, Toyama M, Takehara K, Nakachi M, Ishibashi O, Kawashima Y, Oda SI (2002) Food habits of the feral small Asian mongoose (Herpestes javanicus) and impacts on native species in the northern part of Okinawa Island. Honyurui Kagaku 42:53–62 (in Japanese)

    Google Scholar 

  • Ozaki K, Baba T, Komeda S, Kinjyo M, Toguchi Y, Harato T (2002) The declining distribution of the Okinawa rail Gallirallus okinawae. J Yamashina Inst Ornithol 34:136–144 (in Japanese)

    Article  Google Scholar 

  • Ozaki K, Komeda S, Baba T, Kinjyo M, Toguchi Y, Harato T (2007) Declining distribution of the Okinawa rail: impact of introduced species. J Ornithol 147:S103–S104

    Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Primack RB, Ibáñez I, Higuchi H, Lee SD, Miller-Rushing AJ, Wilson AM, Silander JA (2009) Spatial and interspecific variability in phenological responses to warming temperatures. Biol Conserv 142:2569–2577

    Article  Google Scholar 

  • Pulido F (2007) Phenotypic changes in spring arrival: evolution, phenotypic plasticity, effects of weather and condition. Clim Res 35:5–23

    Article  Google Scholar 

  • Rosenzweig C, Karoly D, Vicarelli M, Neofotis P, Wu Q, Casassa G, Menzel A, Root TL, Estrella N, Seguin B, Tryjanowski P, Liu C, Rawlins S, Imeson A (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 435:353–357

    Article  Google Scholar 

  • Rubolini D, Møller AP, Rainio K, Lehikoinen E (2007) Intraspecific consistency and geographic variability in temporal trends of spring migration phenology among European bird species. Clim Res 35:135–146

    Article  Google Scholar 

  • Sáyago R, MacGregor-Fors I (2010) The arrival of barn swallows (Hirundo rustica) to a neotropical city is related to precipitation in wintering areas. Ornitol Neotrop 21:105–108

    Google Scholar 

  • Seki SI (2009) Population trends and molecular phylogenetic position of the isolated Ryukyu rRobin Erithacus komadori on the Danjo Islands, Japan. Jpn J Ornithol 58:18–27

    Article  Google Scholar 

  • Shaw LM, Chamberlain D, Evans M (2008) The house sparrow Passer domesticus in urban areas: reviewing a possible link between post-decline distribution and human socioeconomic status. J Ornithol 149:293–299

    Article  Google Scholar 

  • Sparks TH, Roberts DR, Crick HQP (2001) What is the value of first arrival dates of spring migrants in phenology? Avian Ecol Behav 7:75–85

    Google Scholar 

  • Sparks TH, Tryjanowski P, Cooke A, Crick HPQ, Kuźniak S (2007) Vertebrate phenology at similar latitudes: temperature responses differ between Poland and the United Kingdom. Clim Res 34:93–98

    Article  Google Scholar 

  • Sugimura K, Yamada F, Miyamoto A (2003) Population trend, habitat change and conservation of the unique wildlife species on Amami Island, Japan. Glob Env Res 7:79–89

    Google Scholar 

  • Takeda J (1994) Plant phenology, animal behaviour and food-gathering by the coastal people of the Ryukyu Archipelago. Hum Nat 3:117–137

    Google Scholar 

  • Thiollay JM (1997) Distribution and abundance patterns of bird community and raptor populations in the Andaman archipelago. Ecography 20:67–82

    Article  Google Scholar 

  • Tøttrup AP, Thorup K, Rahbek C (2006) Patterns of change in timing of spring migration in North European songbird populations. J Avian Biol 37:84–92

    Google Scholar 

  • Tryjanowski P, Sparks TH (2001) Is the detection of the first arrival date of migrating birds influenced by population size? A case study of the red-backed shrike Lanius collurio. Int J Biometeorol 45:217–219

    Article  PubMed  CAS  Google Scholar 

  • Tryjanowski P, Kuźniak S, Sparks TH (2005) What affects the magnitude of change in first arrival dates of migrant birds? J Ornithol 146:200–205

    Article  Google Scholar 

  • Tryjanowski P, Panek M, Sparks TH (2006) Phenological response of plants to temperature varies at the same latitude: case study of dog violet and horse chestnut in England and Poland. Clim Res 32:89–93

    Article  Google Scholar 

  • Vatka E, Orell M, Rytkönen S (2011) Warming climate advances breeding and improves synchrony of food demand and food availability in a boreal passerine. Global Change Biol 17:3002–3009

    Article  Google Scholar 

  • Visser ME (2008) Keeping up with a warming world; assessing the rate of adaptation to climate change. Proc R Soc Lond B 275:649–659

    Article  Google Scholar 

Download references

Acknowledgments

We sincerely thank the agents of the Japan Meteorological Agency for collecting phenological and climate data over so many decades. The editor and reviewers provided valuable comments, which helped us to improve an early version of the study. O.G. received a contract of the Juan de la Cierva program (ref. JCI-2009-05274). This research was supported by the Japan Society for the Promotion of Science to H.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyuki Doi.

Additional information

Communicated by T. Friedl.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 51 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordo, O., Doi, H. Spring phenology delays in an insular subtropical songbird: is response to climate change constrained by population size?. J Ornithol 153, 355–366 (2012). https://doi.org/10.1007/s10336-011-0750-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-011-0750-x

Keywords

Navigation