Skip to main content
Log in

Age-related changes in abundance of enterococci and Enterobacteriaceae in Pied Flycatcher (Ficedula hypoleuca) nestlings and their association with growth

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Bacteria have the potential to be important selective forces in the evolution of many aspects of avian biology, including nestling growth. We estimated abundances of two common gut bacterial types in birds (enterococci and Enterobacteriaceae) and their correlation with growth in tarsus length, mass and wing length of 102 nestlings (54 broods) of the Pied Flycatcher, Ficedula hypoleuca, in a population of central Spain. Chicks were weighed and measured on days 7–13 after hatching, at which ages fecal samples were obtained for detection and estimation of abundance of enterococci and Enterobacteriaceae. The loads of the two bacterial types were not correlated. Enterobacterial loads decreased from day 7 to 13, while loads of enterococci increased during the same period. On day 7, loads of Enterobacteriaceae among nest mates were similar whereas loads of enterococci were not similar. On day 13, nest mates did not have similar loads of either bacterial type. Loads of enterococci were positively correlated with body mass and wing length on day 7, but not on day 13. Tarsus growth between days 7 and 13 was negatively correlated with loads of enterococci on day 7.

Zusammenfassung

Alterungsbedingte Veränderungen in der Abundanz von enterokokken und Enterobacteriaceae und deren Assoziation mit dem Wachstum von Trauerschnäpperküken (Ficedula hypoleuca)

Bakterien spielen potentiell eine wichtige selektive Rolle in vielen Aspekten der Evolutionsbiologie von Vögeln, einschließlich des Wachstums von Küken. Hier haben wir die Häufigkeit von zwei Darmbakterien (enterokokken und Enterobacteriaceae), welche in Vögeln vorkommen, geschätzt, ebenso wie die Korrelation dieser Bakterienabundanzen mit dem Wachstum von Tarsuslänge, Gewicht und Flügellänge von 102 Nestlingen (54 Bruten) einer Population von Trauerschnäppern (Ficedula hypoleuca) in Zentral-Spanien. Die Küken wurden an Tag 7 und 13 nach dem Schlüpfen gewogen und gemessen an denselben Tagen wurden, zur Erfassung und Abschätzung der Abundanz von enterokokken und Enterobacteriaceae, Kotproben entnommen. Die Abundanzen der beiden Bakterienarten waren nicht miteinander korreliert. Die Abundanz von Enterobacteriaceae verringerte sich von Tag 7 bis Tag 13, während die Abundanz von enterokokken im gleichen Zeitraum anstieg. Am Tag 7 ähnelten sich die Abundanzen von Enterobacteriaceae unter Nestgeschwistern während die der enterokokken variierten. Am Tag 13 waren de Abundanzen von Nestgefährten bei keinem der beiden Bakterienarten ähnlich. Die Abundanzen von enterokokken waren positiv mit Gewicht und Flügellänge am Tag 7 korreliert, jedoch nicht am Tag 13. Das Tarsuswachstum zwischen den Tagen 7 und 13 war negativ korreliert mit der Abundanz von enterokokken am Tag 7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alatalo RV, Lundberg A (1986) Heritability and selection on tarsus length in the pied flycatcher (Ficedula hypoleuca). Evolution 40:574–583

    Article  Google Scholar 

  • Barrow PA (1994) The microflora of the alimentary tract and avian pathogens: traslocation and vertical transmission. In: Board RG, Fuller R (eds) Microbiology of avian eggs, 1st edn. Chapman & Hall, London, pp 117–136

    Chapter  Google Scholar 

  • Berger S, Disko R, Gwinner H (2003) Bacteria in starling nests. J Onithol 144:317–322

    Google Scholar 

  • Blanco G, Lemus JA, Grande J (2006) Faecal bacteria associated with different diets of wintering red kites: influence of livestock carcass dumps in microflora alteration and pathogen acquisition. J Appl Ecol 43:990–998

    Article  Google Scholar 

  • Brinkhof MWG, Heeb P, Kölliker M, Richner H (1999) Immunocompetence of nestling great tits in relation to rearing environment and parentage. Proc R Soc Lond B 266:2315–2322

    Article  Google Scholar 

  • Burtt EH, Ichida JM (1999) Occurrence of feather-degrading bacilli in the plumage of birds. Auk 116:364–372

    Google Scholar 

  • Burtt EH, Ichida JM (2004) Gloger’s rule, feather-degrading bacteria, and colour variation among song sparrows. Condor 106:681–686

    Article  Google Scholar 

  • Cichón M, Dubiec A (2005) Cell-mediated immunity predicts the probability of local recruitment in nestling blue tits. J Evol Biol 18:962–966

    Article  PubMed  Google Scholar 

  • Glunder G (2002) Influence of diet on the occurrence of some bacteria in the intestinal flora of wild and pet birds. Dtsch Tierarztl Wochenschr 109:266–270

    PubMed  CAS  Google Scholar 

  • Goldstein G, Flory KR, Browne BA, Majid S, Ichida JM, Burtt EH (2004) Bacterial degradation of black and white feathers. Auk 121:656–659

    Article  Google Scholar 

  • González S, Téllez S, Ballesteros C, Blanco M, García-Montijano M, García A, Lemus J, Briones V (2000) Intestinal and respiratory microbiota in captive Spanish imperial eagles (Aquila adalberti) in Spain. In: 4th meeting European wildlife disease association. Zaragoza, Spain

  • Gunderson AR, Forsyth MH, Swaddle JP (2009) Evidence that plumage bacteria influence feather coloration and body condition of easter bluebirds Sialia sialis. J Avian Biol 40:440–447

    Article  Google Scholar 

  • Herbert RA (1990) Methods for enumerating microorganisms and determining biomass in natural environments. In: Grigorova R, Norris JR (eds) Methods in microbiology. Techniques in microbial ecology. Academic, London, pp 1–39

    Chapter  Google Scholar 

  • Janiga M, Sedlánová A, Rigg R, Novotná M (2007) Patterns of prevalence among bacterial communities of alpine accentors (Prunella collaris) in the tatra mountains. J Ornithol 148:135–143

    Article  Google Scholar 

  • Klaenhammer TR (1988) Bacteriocins of Lactic-acid bacteria. Biochimie 70:337–349

    Article  PubMed  CAS  Google Scholar 

  • Klomp JE, Murphy MT, Smith SB, Mckay JE, Ferrera I, Reysenbach AL (2008) Cloacal microbial communities of female spotted towhees Pipilo maculatus: microgeographic variation and individual sources of variability. J Avian Biol 39:530–538

    Article  Google Scholar 

  • Kulkarni S, Heeb P (2007) Social and sexual behaviours aid transmission of bacteria in birds. Behav Process 74:88–92

    Article  Google Scholar 

  • Kyle PD, Kyle GZ (1993) An evaluation of the role of microbial flora in the salivary transfer technique for hand-rearing chimney swifts. Wildl Rehabil 8:65–71

    Google Scholar 

  • Lambrechts MM, Adriaensen F, Ardia DR et al (2010) The design of artificial nestboxes for the study of secondary hole-nesting birds: a review of methodological inconsistencies and potential biases. Acta Ornithol 45:1–26

    Article  Google Scholar 

  • Lombardo MP, Thorpe PA, Cichewicz R, Henshaw M, Millard C, Steen C, Zeller TK (1996) Communities of cloacal bacteria in tree swallow families. Condor 98:167–172

    Article  Google Scholar 

  • Lucas FS, Heeb P (2005) Environmental factors shape cloacal bacterial assemblages in great tit Parus major and blue tit Parus caeruleus nestlings. J Avian Biol 36:510–516

    Article  Google Scholar 

  • Lundberg A, Alatalo RV (1992) The pied flycatcher. Academic, London

    Google Scholar 

  • Malyszko E, Kaminski P, Kozlowski S, Pepinski W (1991) Occurrence of instestinal flora and fauna during the development of jackdaw (Corvus monedula) nestlings. In: Pinowski J, Kavanagh BP, Górski W (eds) Nestling mortality of granivorous birds due to microorganisms and toxic substances. PWN, Warsaw, pp 173–180

    Google Scholar 

  • Martín-Vivaldi M, Peña A, Peralta-Sánchez JM, Sánchez L, Ananou S, Ruiz-Rodríguez M, Soler JJ (2010) Antimicrobial chemicals in hoopoe preen secretions are produced by symbiotic bacteria. Proc R Soc Lond B 277:123–130

    Article  Google Scholar 

  • Maul JD, Farris JL (2005) Community-level physiological profiles of cloacal microbes in songbirds (Order: Passeriformes): variation due to host species, host diet, and habitat. Microb Ecol 50:19–28

    Article  PubMed  CAS  Google Scholar 

  • Mead GC (1997) Bacteria in the gastrointestinal tract of birds. In: Mackie RI, White BA, Isaacson RE (eds) Gastrointestinal microbes and host interactions. Chapman and Hall, New York, pp 216–240

  • Mennerat A, Mirleau P, Blondel J, Perret P, Lambrechts MM, Heeb P (2009) Aromatic plants in nests of the blue tit Cyanistes caeruleus protect chicks from bacteria. Oecologia 161:849–855

    Article  PubMed  Google Scholar 

  • Mills TK, Lombardo MP, Thorpe PA (1999) Microbial colonization of the cloacae of nestling tree swallows. Auk 116:947–956

    Google Scholar 

  • Møller AP, Czirjak GÁ, Heeb P (2009) Feather micro-organisms and uropygial antimicrobial defences in a colonial passerine bird. Funct Ecol 23:1097–1102

    Article  Google Scholar 

  • Moreno J, Sanz JJ, Merino S, Arriero E (2001) Dailiy energy expenditure and cell-mediated immunity in pied flycatchers while feeding nestlings: interaction with moult. Oecologia 129:492–497

    Google Scholar 

  • Moreno J, Briones V, Merino S, Ballesteros C, Sanz JJ, Tomás G (2003) Beneficial effects of cloacal bacteria on growth and fledging size in nestling Pied Flycatchers Ficedula hypoleuca in Spain. Auk 120:784–790

    Google Scholar 

  • Moreno J, Merino S, Sanz JJ, Arriero E, Morales J, Tomás G (2005) Nestling cell-mediated immune response, body mass and hatching date as predictors of local recruitment in the pied flycatcher Ficedula hypoleuca. J Avian Biol 36:251–260

    Article  Google Scholar 

  • Moreno J, Martínez JG, Morales J, Lobato E, Merino S, Tomás G, Vásquez RA, Möstl E, Osorno JL (2009) Paternity loss in relation to male age, territorial behaviour and stress in the pied flycatcher. Ethology 116:76–84

    Article  Google Scholar 

  • Nuttal PA (1997) Viruses, bacteria and fungi of birds. In: Clayton DH, Moore J (eds) Host-parasite evolution. General principles and avian models. Oxford University Press, Oxford, pp 271–302

    Google Scholar 

  • O’Connor RJ (1984) The growth and development of birds. Wiley, New York

    Google Scholar 

  • Peralta-Sánchez JM, Møller AP, Martín-Platero AM, Soler JJ (2010) Number and colour composition of nest lining feathers predict eggshell bacterial communities in barn swallow nests: an experimental study. Funct Ecol 24:426–433

    Article  Google Scholar 

  • Poiani A, Wilks C (2000) Sexually transmitted diseases: a possible cost of promiscuity in birds? Auk 117:1061–1065

    Article  Google Scholar 

  • Potti J, Moreno J, Yorio P, Briones V, Borboroglu PG, Villar S, Ballesteros C (2002) Bacteria divert resources from growth for Magellanic penguin chicks. Ecol Lett 5:709–714

    Article  Google Scholar 

  • Ricklefs RE (1979) Patterns of growth in birds. V. A comparative study of development in the starling, common tern, and Japanese quail. Auk 96:10–30

    Google Scholar 

  • Riley MA, Wertz JE (2002) Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 56:117–137

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Rodríguez M, Lucas FS, Heeb P, Soler JJ (2009a) Differences in intestinal microbiota between avian brood parasites and theirs hosts. Biol J Linn Soc 96:406–414

    Article  Google Scholar 

  • Ruiz-Rodríguez M, Soler JJ, Lucas FS, Heeb P, Palacios MJ, Martín-Gálvez D, de Neve L, Pérez-Contreras T, Martínez JG, Soler M (2009b) Bacterial diversity at the cloaca relates to an immune response in magpie Pica pica and to body condition of great spotted cuckoo Clamator glandarius nestlings. J Avian Biol 40:42–48

    Article  Google Scholar 

  • Ruiz-Rodríguez M, Valdivia E, Soler JJ, Martín-Vivaldi M, Martín-Platero AM, Martínez-Bueno M (2009c) Symbiotic bacteria living in the hoopoe’s uropygial gland prevent feather degradation. J Exp Biol 22:3621–3626

    Article  Google Scholar 

  • Sanz JJ, Moreno J (1995) Mass loss in brooding female pied flycatchers Ficedula hypoleuca: no evidence for reproductive stress. J Avian Biol 26:313–320

    Article  Google Scholar 

  • Sanz JJ, Potti J, Moreno J, Merino S, Frías O (2003) Climate change and fitness components of a migratory bird breeding in the mediterranean region. Glob Change Biol 9:461–472

    Article  Google Scholar 

  • Schew WA, Ricklefs RE (1998) Developmental plasticity. In: Starck JM, Ricklefs RE (eds) Avian growth and development. Oxford University Press, New York, pp 288–300

    Google Scholar 

  • Shawkey MD, Pillai SR, Hilla GE (2003) Chemical warfare? Effects of uropygial oil on feather-degrading bacteria. J Avian Biol 34:345–349

    Article  Google Scholar 

  • Sheldon BC (1993) Sexually-transmitted disease in birds-ocurrence and evolutionary significance. Philos Trans R Soc Lond B 339:491–497

    Article  CAS  Google Scholar 

  • Soerjadiliem AS, Snoeyenbos GH, Weinack OM (1984) Comparative studies on competitive exclusion of three isolates of Campylobacter fetus subs. Jejuni in chickens by native gut microflora. Avian Dis 28:139–146

    Article  CAS  Google Scholar 

  • Soler JJ, Martín-Vivaldi M, Ruiz-Rodríguez M, Valdivia E, Martín-Platero AM, Martínez-Bueno M, Peralta-Sánchez JM, Méndez M (2008) Symbiotic association between hoopoes and antibiotic-producing bacteria that live in their uropygial gland. Funct Ecol 22:864–871

    Google Scholar 

  • Soler JJ, Martín-Vivaldi M, Peralta-Sánchez JM, Ruiz-Rodríguez M (2009) Antibiotic-producing bacteria as a possible defence of birds against pathogenic microorganisms. Open Ornithol 2:29–36

    Article  Google Scholar 

  • Starck JM, Ricklefs RE (1998) Avian growth and development. Oxford University Press, New York

    Google Scholar 

  • Stevens CE, Hume ID (1998) Contributions of microbes in vertebrate gastrointestinal tract to production and conservation of nutrients. Physiol Rev 78:393–427

    PubMed  CAS  Google Scholar 

  • Tannock GW (1997) Modification of the normal microbiota by diet, stress, antimicrobial agents and probiotics. In: Mackie R (ed) Gastrointestinal. Oxford University Press, Oxford, pp 434–465

    Google Scholar 

  • Waldenström J, Broman T, Carlsson I, Hasselquist D, Achterberg RP, Wagenaar JA, Olsen B (2002) Prevalence of Campylobacter jejuni, Campylobacter lari, and Campylobacter coli in different ecological guilds and taxa of migrating birds. Appl Environ Microbiol 68:5911–5917

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financed by project CGL2007-6125 to J.M. (Ministerio de Ciencia e Innovación). S.G.-B. was supported by a FPI grant from MICINN and R.R.dC. was supported by a JAE-CSIC grant. We were authorized by J. Donés, Director of “Centro Montes de Valsaín” (Organismo Autónomo de Parques Nacionales) to work in the study area. We thank the group DICM—Centro de Vigilancia Sanitaria Veterinaria, for their help with laboratory work, and S. Merino, J. Martínez-de la Puente, S. del Cerro and J. Rivero-de Aguilar for collaboration in the field. This paper is a result of the agreement between J.M. and VISAVET-UCM. All the experiments performed complied with the current laws of the Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia González-Braojos.

Additional information

Communicated by T. Friedl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Braojos, S., Vela, A.I., Ruiz-de-Castañeda, R. et al. Age-related changes in abundance of enterococci and Enterobacteriaceae in Pied Flycatcher (Ficedula hypoleuca) nestlings and their association with growth. J Ornithol 153, 181–188 (2012). https://doi.org/10.1007/s10336-011-0725-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-011-0725-y

Keywords

Navigation