Skip to main content
Log in

Extremely low ambient temperature affects haematological parameters and body condition in wintering Great Tits (Parus major)

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

In high latitudes, thermoregulatory and behavioural adjustments of birds allow survival under extreme ambient temperatures, changing day length, and food availability. In such habitats with such fluctuating environmental conditions, dominant individuals in social species often monopolise safe microhabitats and food resources, which may lead to greater levels of stress in subordinates. The results of this study revealed that certain haematological indices of health state and body condition of wintering Great Tits (Parus major) were dependent on their sex and age under conditions of extreme ambient temperature. Heterophil and lymphocyte counts revealed a significant increase in heterophil/lymphocyte ratio (H/L) in female Great Tits during the course of cold spell, where the increase was detected mainly in the first year females. We also found that the condition of pectoral muscle during the cold spells deteriorated only in females, especially in the first year individuals. Since sex appears to be the most important predictor of the dominance rank and survival in Great Tit winter groups, elevated physiological stress in adult and first year females during cold spells may be explained in terms of increased resource monopolisation by dominant individuals.

Zusammenfassung

In großen Höhen machen es Vögeln thermoregulatorische und verhaltensbiologische Anpassungen möglich, unter extremen Umgebungstemperaturen und veränderten Tageslängen und Futterverfügbarkeit zu überleben. In solchen Habitaten mit ihren schwankenden Umgebungsbedingungen monopolisieren innerhalb von sozialen Arten oft dominante Tiere sichere Mikrohabitate und Futterreserven, was bei den subdominanten Artgenossen zu erhöhtem Stress führen kann. Die Ergebnisse dieser Untersuchung machen deutlich, dass bestimmte hämatologische Anzeiger für den Gesundheitsstatus und die körperliche Verfassung überwinternder Kohlmeisen (Parus major) bei extremen Umgebungstemperaturen von ihrem Alter und ihrem Geschlecht abhängig waren. Zählungen von Heterophilen und Lymphozyten ergaben einen signifikanten Anstieg der Heterophilen/Lymphozyten-Rate (H/L) bei weiblichen Kohlmeisen während Kälteeinbrüchen, wobei dieser Anstieg in erster Linie bei den Weibchen vom gleichen Jahr festgestellt wurde. Wir fanden außerdem, dass sich der Zustand des Herzmuskels während dieser Kälteeinbrüche verschlechterte, allerdings nur bei Weibchen und da auch nur bei denen vom gleichen Jahr. Da bei den Wintergruppen der Kohlmeisen das Geschlecht der wichtigste Prädiktor für Dominanz und Überleben zu sein scheint, kann bei adulten Weibchen vom gleichen Jahr erhöhter Stress während Kälteeinbrüchen möglicherweise mit massiverer Ressource-Monopolisierung durch dominante Individuen erklärt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguirre AA, Hansen DE, Starkey EE, McLean RG (1995) Serologic survey of wild cervids for potential disease agents in selected national parks in the United States. Prev Vet Med 21:313–322

    Google Scholar 

  • Averbeck C (1992) Haematology and blood chemistry of healthy and clinically abnormal great black-backed gulls (Larus marinus) and herring gulls (Larus argentatus). Avian Pathol 28:215–223

    Google Scholar 

  • Bairlein F (1995) European-African songbird migration network. Manual of field methods. European Science Foundation, Wilhelmshaven

    Google Scholar 

  • Broggi J, Orell M, Hohtola E, Nilson JA (2004) Metabolic response to temperature variation in the great tit: an interpopulation comparison. J Anim Ecol 73:967–972

    Google Scholar 

  • Buehler DM, Piersma T, Matson K, Tieleman BI (2008) Seasonal redistribution of immune function in a migrant shorebird: annual-cycle effects override adjustments to thermal regime. Am Nat 172:783–796

    PubMed  Google Scholar 

  • Buehler DM, Encinas-Viso F, Petit M, Vezina F, Tieleman BI, Piersma T (2009) Limited access to food and physiological trade-offs in a long distant migrant shorebird. II. Constitutive immune function and the acute-phase response. Physiol Biochem Zool 82:561–771

    CAS  PubMed  Google Scholar 

  • Calder WA (1974) The thermal and radiant environment of a winter hummingbird nest. Condor 76:268–273

    Google Scholar 

  • Campbell TW (1995) Avian hematology and cytology. Iowa State University Press, Ames

    Google Scholar 

  • Chaplin SB (1976) The physiology of hypothermia in the blackcapped chickadee, Parus domesticus. Comp Biochem Physiol 112:335–344

    Google Scholar 

  • Cichoń M, Chadzinska M, Ksiazek A, Konarzewski M (2002) Delayed effects of cold stress on immune response in laboratory mice. Proc R Soc Lond B 269:1493–1497

    Google Scholar 

  • Cohen JJ (1972) Thymus-derived lymphocytes sequestered in bone marrow of hydrocortisone-treated mice. J Immunol 108:841

    CAS  PubMed  Google Scholar 

  • Davis AK, Maney DL, Maerz JC (2008) The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. Funct Ecol 22:760–772

    Google Scholar 

  • Dawson WR, Marsh RL (1989) Metabolic acclimatization to cold and season in birds. In: Bech C, Reinertsen RE (eds) Physiology of cold adaptation in birds. Plenum, New York, pp 83–94

    Google Scholar 

  • De Laet JF (1985) Dominance and anti-predator behaviour of great tits Parus major: a field study. Ibis 127:372–377

    Google Scholar 

  • Dhabhar FS (2002) A hassle a day may keep the doctor away: stress and the augmentation of immune function. Integr Comp Biol 42:556–564

    PubMed  Google Scholar 

  • Dhabhar FS, McEwen BS (1999) Enhancing versus suppressive effects of stress hormones on skin immune function. Proc Natl Acad Sci USA 96:1059–1064

    CAS  PubMed  Google Scholar 

  • Ekman J (1987) Exposure and time use in willow tit flocks- the cost of subordination. Anim Behav 35:445–452

    Google Scholar 

  • Ekman J (1989) Ecology of non-breeding social systems of Parus. Wilson Bull 101:263–288

    Google Scholar 

  • Ekman JB, Askenmo CEH (1984) Social rank and habitat use in willow tit groups. Anim Behav 32:508–514

    Google Scholar 

  • Ekman JB, Lilliendahl K (1993) Using priority to food access: fattening strategies in dominance-structured willow tit (Parus montanus) flocks. Behav Ecol 4:232–238

    Google Scholar 

  • Fauci AS (1975) Mechanisms of corticosteroid action on lymphocyte subpopulations 1. Redistribution of circulating T-lymphocytes and B-lymphocytes to bone marrow. Immunology 28:669–680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gautreaux SA Jr (1980) Animal migration, orientation and navigation. Academic, Toronto

  • Gosler AG (1996) Environmental and social determinants of winter fat storage in the great tit Parus major. J Anim Ecol 65:1–17

    Google Scholar 

  • Gross WB, Siegel HS (1983) Evaluation of the heterophil/lymphocyte ratio as a measure of stress in chickens. Avian Dis 27:972–979

    CAS  PubMed  Google Scholar 

  • Hangalapura BN, Nieuwland MGB, de Vries Reilingh G, van den Brand H, Kemp B, Parmentier HK (2004) Durations of cold stress modulates overall immunity of chicken lines divergently selected for antibody responses. Poult Sci 83:765–775

    CAS  PubMed  Google Scholar 

  • Harmon BG (1998) Avian heterophils in inflammation and disease resistance. Poult Sci 77:972–977

    CAS  PubMed  Google Scholar 

  • Hawkey CM, Dennett TB (1989) Color atlas of comparative veterinary hematology. Iowa State University Press, Ames

    Google Scholar 

  • Hissa R, Saarela S, Rintamaki H, Linden H, Hohtola E (1983) Energetics and development of temperature regulation in capercaillie Tetrao urogaIlus. Physiol Zool 56:142–151

    Google Scholar 

  • Hõrak P, Tegelmann L, Ots I, Moller AP (1999) Immune function and survival of great tit nestlings in relation to growth conditions. Oecologia 121:316–322

    Google Scholar 

  • Houwen B (2002) Blood film preparation and staining procedures. Lab Hematol 22:1–7

    Google Scholar 

  • Hylton RA, Frederick PC, de la Fuente TE, Spalding MG (2006) Effects of nestling health on postfledging survival of wood storks. Condor 108:97–106

    Google Scholar 

  • Jain NC (1986) Schalm’s veterinary hematology. Lea and Febiger, Philadelphia

    Google Scholar 

  • Kalela O (1954) Populationsökologische Gesichtspunkte zur Entstehung des Vogelsugs. Ann Zool Soc Zool Bot Fenn Vanamo 16:1–31

    Google Scholar 

  • Ketterson ED, Nolan V (1976) Geographic variation and its climatic correlates in the sex ratio of eastern-wintering dark-eyed juncos (Junco hyemalis hyemalis). Ecology 57:679–693

    Google Scholar 

  • Kilgas P, Tilgar V, Mand R (2006) Hematological health state indices predict local survival in a small passerine bird, the great tit (Parus major). Physiol Biochem Zool 79:565–572

    PubMed  Google Scholar 

  • Kim KD, Zhao J, Auh S, Yang XM, Du PS, Tang H, Fu YX (2007) Adaptive immune cells temper initial innate responses. Nat Med 13:1248–1252

    CAS  PubMed  Google Scholar 

  • Koivula K, Welling P, Rytkönen S (1995) Differences in mate guarding between age classes in the willow tit, Parus montanus. Anim Behav 49:852–854

    Google Scholar 

  • Krams I (1998a) Dominance-specific vigilance in the great tit. J Avian Biol 29:55–60

    Google Scholar 

  • Krams I (1998b) Rank-related fattening strategies of willow tit Parus montanus and crested tit P. cristatus mixed flock members. Ornis Fennica 75:19–26

    Google Scholar 

  • Krams I (2000) Length of feeding day and body weight of great tits in a single-and a two-predator environment. Behav Ecol Sociobiol 48:147–153

    Google Scholar 

  • Krams IA, Krams T, Cernihovics J (2001) Selection of foraging sites in mixed willow and crested tit flocks: rank-dependent survival strategies. Ornis Fenn 78:1–11

    Google Scholar 

  • Krams I, Cirule D, Suraka V, Krama T, Rantala MJ, Ramey G (2010) Fattening strategies of wintering great tits support the optimal body mass hypothesis under condition of extremely ambient temperature. Funct Ecol 24:172–177

    Google Scholar 

  • Książek A, Konarzewski M, Chadzinska M, Cichon M (2003) Costs of immune response in cold-stressed laboratory mice selected for high and low basal metabolism rates. Proc R Soc Lond B 270:2025–2031

    Google Scholar 

  • Lack D (1944) The problem of partial migration. Br Birds 37:122–130, 143–150

    Google Scholar 

  • Lee KA (2006) Linking immune defenses and life history at the levels of the individual and the species. Integr Comp Biol 46:1000–1015

    CAS  PubMed  Google Scholar 

  • Lindström KM, Hawley DM, Davis AK, Wikelski M (2005) Stress responses and disease in three wintering house finch (Carpodacus mexicanus) populations along a latitudinal gradient. Gen Comp Endocrinol 143:231–239

    PubMed  Google Scholar 

  • Littell RC, Stroup WW, Freund RJ (2002) SAS for linear models, 4th edn. SAS Institute, Cary, NC

  • Lobato E, Moreno J, Merino S, Sanz JJ, Arriero E (2005) Haematological variables are good predictors of recruitment in nestling pied flycatchers (Ficeduld hypoleuca). Ecoscience 12:27–34

    Google Scholar 

  • Marsh RL, Dawson WR (1989) Avian adjustments to cold, vol 4. Springer, Berlin

    Google Scholar 

  • Martin LB (2009) Stress and immunity in wild vertebrates: timing is everything. Gen Comp Endocrinol 163:70–76

    CAS  PubMed  Google Scholar 

  • Martin LB, Weil ZM, Nelson RJ (2008) Seasonal changes in vertebrate immune activity: mediation by physiological trade-offs. Philos Trans R Soc Lond B 363:321–339

    Google Scholar 

  • Maxwell MH (1993) Avian blood leukocyte responses to stress. Worlds Poult Sci J 49:34–43

    Google Scholar 

  • Ots I, Murumagi A, Hõrak P (1998) Haematological health state indices of reproducing Great Tits: methodology and sources of natural variation. Funct Ecol 12:700–707

    Google Scholar 

  • Pöysä H (1988) Feeding consequences of the dominance status in great tit Parus major groups. Ornis Fenn 65:69–75

    Google Scholar 

  • Prinzinger R, Goppel R, Lorenz A, Kulzer E (1981) Body temperature and metabolism in the red-backed mousebird (Colius castanotus) during fasting and torpor. Comp Biochem Physiol A Physiol 69:689–692

    Google Scholar 

  • Regnier JA, Kelley KW (1981) Heat- and cold-stress suppresses in vivo and in vitro cellular immune responses of chickens. Am J Vet Res 42:294–299

    CAS  PubMed  Google Scholar 

  • Reinertsen RE, Haftorn S (1986) Different metabolic strategies of northern birds for nocturnal survival. J Comp Physiol B Biochem Syst Environ Physiol 156:655–663

    Google Scholar 

  • Rintamäki H, Saarela S, Marjakangas A, Hissa R (1983) Summer and winter temperature regulation in the black grouse Lyrurus tetrix. Physiol Zool 56:152–159

    Google Scholar 

  • Rupley AE (1997) Manual of avian practice. Saunders, Philadelphia

    Google Scholar 

  • Saarela S, Klapper B, Heldmaier G (1995) Daily rhythm of oxygen consumption and thermoregulatory responses in some European winter- or summer-acclimatized finches at different ambient temperatures. J Comp Physiol B Biochem Syst Environ Physiol 165:366–376

    Google Scholar 

  • Saitou T (1979) Ecological study of social organization in the great tit, Parus major L. III. Home range of the basic flocks and dominance relationships of the members in a basic flock. Misc Rep Yamashina Inst Orn 11:149–171

    Google Scholar 

  • Sandell M, Smith HG (1991) Dominance, prior occupancy, and winter residency in the great tit (Parus major). Behav Ecol Sociobiol 29:147–152

    Google Scholar 

  • Sapolsky RM (1992) Neuroendocrinology of the stress response. MIT Press, Cambridge

    Google Scholar 

  • Satterlee DG, Aguileraquintana I, Munn BJ, Krautmann BA (1989) Vitamin C amelioration of the adrenal stress response in broiler chickens being prepared for slaughter. Comp Biochem Physiol A Physiol 94:569–574

    CAS  Google Scholar 

  • Siegel HS (1980) Physiological stress in birds. Bio-Science 30:529–534

    CAS  Google Scholar 

  • Steen J (1958) Climatic adaptation in some small northern birds. Ecology 39:625–629

    Google Scholar 

  • Sutherland WJ, Parker GA (1985) Distribution of unequal competitors. In: Sibly RM, Smith RH (eds) Behavioural ecology—ecological consequences of adaptive behaviour. Blackwell, Oxford, pp 255–274

  • Thrall MA (2004) Hematology of amphibians, veterinary hematology and clinical chemistry: text and clinical case presentations. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Tschirren B, Richner H (2006) Parasites shape the optimal investment in immunity. Proc R Soc Lond B 273:1773–1777

    Google Scholar 

  • Verbeek MEM, Boon A, Drent PJ (1996) Exploration, aggressive behavior and dominance in pair-wise confrontations of juvenile male great tits. Behaviour 133:945–963

    Google Scholar 

  • Verbeek MEM, De Goede P, Drent PJ, Wiepkema PR (1999) Individual behavioural characteristics and dominance in aviary groups of great tits. Behaviour 136:23–48

    Google Scholar 

  • Vleck CM, Vertalino N, Vleck D, Bucher TL (2000) Stress, corticosterone, and heterophil to lymphocyte ratios in free-living Adelie penguins. Condor 102:392–400

    Google Scholar 

Download references

Acknowledgments

The authors thank Peeter Hõrak and Mikus Abolins-Abols for their helpful comments on the manuscript and Aleksejs Osipovs for his help in the field. The study was supported by Latvian Science Foundation grant 07.2100 to I.K. All animal manipulations comply with the current laws of the Republic of Latvia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indrikis Krams.

Additional information

Communicated by C. G. Guglielmo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krams, I., Cīrule, D., Krama, T. et al. Extremely low ambient temperature affects haematological parameters and body condition in wintering Great Tits (Parus major). J Ornithol 152, 889–895 (2011). https://doi.org/10.1007/s10336-011-0672-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-011-0672-7

Keywords

Navigation