Journal of Ornithology

, Volume 152, Issue 3, pp 549–555 | Cite as

Either taking it easy or feeling too tired: old Cory’s Shearwaters display reduced activity levels while at sea

  • Paulo Catry
  • José Pedro Granadeiro
  • Jaime Ramos
  • Richard A. Phillips
  • Paulo Oliveira
Original Article

Abstract

It has long been known that birds change their behaviour, reproductive performance and survival as they mature, including in the first few years after recruitment into the breeding population. However, and contrasting with the description of patterns of actuarial and reproductive senescence in later years, there are surprisingly few studies documenting changes in behaviour in old individuals. Such studies are important, as birds provide particularly interesting models for studying the biology of senescence. It has been suggested that, unlike mammals, birds may remain physically fit until an advanced age, yet this has limited empirical support. In this paper, we used activity (immersion) loggers to show that old (>26 years) Cory’s Shearwaters Calonectris diomedea are less active when foraging at sea, spend more time resting on the water and have a smaller number of take-offs and landings during darkness, when compared to experienced mid-aged individuals (13–20 years old). Old individuals also tended to have reduced immune response against an experimental challenge using phytohaemagglutinin. These results are in line with observed reductions in activity levels with age in a wide range of non-avian taxa, and may suggest that old seabirds are physically less fit than younger individuals. Alternatively, old birds might simply be more experienced and their reduction in activity might reflect a strategic regulation of investment in different activities. Our study illustrates the potential for gaining insights into avian aging patterns and processes by looking into the behaviour of model organisms. We therefore encourage more research focusing on behavioural parameters that may reflect variations in physical condition or strategic choices, during both the breeding and non-breeding seasons.

Keywords

Calonectris diomedea Senescence Age Long-lived bird Selvagem 

Zusammenfassung

Es ist bereits seit längerem bekannt, dass sich das Verhalten, der Bruterfolg und die Überlebensrate von Vögeln mit zunehmendem Alter verändert. Trotz der Beschreibung solcher Muster von Sterblichkeitsund reproduktiver Vergreisung in späteren Jahren gibt es erstaunlich wenige Studien, die eine derartige Veränderung im Verhalten alter Individuen dokumentieren. Solche Studien sind wichtig, weil Vögel ein besonders interessantes Modellsystem für die Untersuchung der Biologie von Vergreisung darstellen. Anders als bei Säugetieren wurde vorgeschlagen, dass Vögel bis ins hohe Alter physisch gesund bleiben. Dies wird jedoch nur im begrenzten Maße von empirischen Daten unterstützt. In der vorliegenden Studie verwendeten wir Aktivitätslogger, um zu zeigen, dass 26-jährige Gelbschnabel-Sturmtaucher Calonectris diomedea weniger aktiv sind, während sie auf See furagieren. Sie haben kürzere Ruhepausen auf dem Wasser und eine geringere Anzahl Starts und Landungen während der Dunkelheit, im Vergleich mit erfahrenen mittel alten Individuen (13–20 Jahre alt). Alte Individuen neigten auch zu einer reduzierten Immunreaktion auf eine experimentelle Injektion von Phytohaemagglutinin. Diese Ergebnisse stimmen im Wesentlichen überein mit der beobachteten Abnahme von Aktivität mit zunehmendem Alter in einer großen Anzahl anderer Tiergruppen. Es kann sein, dass alte Seevögel physisch weniger fit sind als jüngere. Alternativ könnten ältere Vögel auch erfahrener sein, und die Aktivitätsreduktion könnte eine strategische Regulierung der Allokation von Investment in unterschiedliche Aktivitäten sein. Unsere Untersuchung zeigt, dass detaillierte Studien des Verhaltens von Modellorganismen das Potential haben, Muster und Alterungsprozesse bei Vögeln zu erklären. Wir regen deshalb mehr Verhaltensstudien an, die die Variation in der physischer Kondition oder verschiedene strategischen Entscheidungen reflektieren, und dies sowohl in wie außerhalb der Brutsaison.

References

  1. Bennett PM, Owens IPF (2002) Evolutionary ecology of birds. Oxford University Press, OxfordGoogle Scholar
  2. Bevan RM, Butler PJ, Woakes AJ, Prince PA (1995) The energy expenditure of free-ranging black-browed albatrosses. Philos Trans R Soc Lond B 350:119–131CrossRefGoogle Scholar
  3. Carter CS, Sonntag WE, Onder WE, Pahor M (2002) Physical performance and longevity in aged rats. J Gerontol 57:B193–B197Google Scholar
  4. Catry P, Phillips RA, Phalan B, Silk JRD, Croxall JP (2004) Foraging strategies of grey-headed albatrosses Thalassarche chrysostoma: integration of movements, activity and feeding events. Mar Ecol Progr Ser 280:261–273CrossRefGoogle Scholar
  5. Catry P, Phillips RA, Phalan B, Croxall JP (2006) Senescence effects in an extremely long-lived bird: the grey-headed albatross Thalassarche chrysostoma. Proc R Soc Lond B 273:1625–1630CrossRefGoogle Scholar
  6. Coulson JC, Fairweather JA (2001) Reduced reproductive performance prior to death in the black-legged kittiwake: senescence or terminal illness? J Avian Biol 32:146–152CrossRefGoogle Scholar
  7. Edwards AM, Phillips RA, Watkins NW, Freeman MP, Murphy EJ, Afanasyev V, Buldyrev SV, da Luz MGE, Raposo EP, Stanley HE, Viswanathan GM (2007) Overturning evidence of Levy flight searches by wandering albatrosses, bumblebees and deer. Nature 449:1044–1049PubMedCrossRefGoogle Scholar
  8. Emborg ME, Ma SY, Mufson EJ, Levey AI, Taylor MD, Brown WD, Holden JE, Kordower JH (1998) Age-related declines in nigral neuronal function correlate with motor impairments in rhesus monkeys. J Comp Neurol 401:253–265PubMedCrossRefGoogle Scholar
  9. Fernández JR, Grant MD, Tulli NM, Karkowski LM, McClearn GE (1999) Differences in locomotor activity across the lifespan of Drosophila melanogaster. Exp Gerontol 34:621–631PubMedCrossRefGoogle Scholar
  10. Forero MG, González-Solis J, Igual JM, Hobson KA, Ruíz X, Viscor G (2006) Ecological and physiological variance in T-cell mediated immune response in Cory’s shearwaters. Condor 108:865–876CrossRefGoogle Scholar
  11. Forslund P, Pärt T (1995) Age and reproduction in birds–hypotheses and tests. Trends Ecol Evol 10:374–378PubMedCrossRefGoogle Scholar
  12. Granadeiro JP (1993) Variation in measurements of Cory’s Shearwater between populations and sexing by discriminant analysis. Ring Migr 14:103–112Google Scholar
  13. Granadeiro JP, Dias MP, Rebelo R, Santos CD, Catry P (2006) Numbers and population trends of Cory’s shearwater Calonectris diomedea at Selvagem Grande, Northeast Atlantic. Waterbirds 29:56–60CrossRefGoogle Scholar
  14. Hanssen SA (2006) Cost of an immune challenge and terminal investment in a long-lived bird. Ecology 87:2440–2446PubMedCrossRefGoogle Scholar
  15. Haussmann MF, Winkler DW, Huntington CE, Vleck D, Sanneman CE, Hanley D, Vleck CM (2005) Cell-mediated immunosenescence in birds. Oecologia 145:270–275PubMedCrossRefGoogle Scholar
  16. Hornung OP, Danker-Hopfe H, Heuser I (2005) Age-related changes in sleep and memory: commonalities and interrelationships. Exp Gerontol 40:279–285PubMedCrossRefGoogle Scholar
  17. Igual JM, Forero MG, Tavecchia G, González-Solis J, Martínez-Abraín A, Hobson KA, Ruiz X, Oro D (2005) Short-term effects of data-loggers on Cory’s shearwaters Calonectris diomedea. Mar Biol 146:619–624CrossRefGoogle Scholar
  18. Ingram DK (2000) Age-related decline in physical activity: generalization to nonhumans. Med Sci Sports Exerc 32:1623–1629PubMedCrossRefGoogle Scholar
  19. Jones OR et al (2008) Senescence rates are determined by ranking on the fast-slow life-history continuum. Ecol Lett 11:664–673PubMedCrossRefGoogle Scholar
  20. Kennedy MW, Nager MG (2006) The perils and prospects of using phytohaemagglutinin in evolutionary ecology. Trends Ecol Evol 21:653–655PubMedCrossRefGoogle Scholar
  21. Lecomte VJ, Sorci G, Cornet S, Jaeger A, Faivre B, Arnoux E, Gaillard M, Trouvé C, Besson D, Chastel O, Weimerskirch H (2010) Patterns of aging in the long-lived wandering albatross. Proc Natl Acad Sci USA 107:6370–6375PubMedCrossRefGoogle Scholar
  22. MacNulty DR, Smith DW, Vucetich JA, Mech LD, Stahler DR, Packer C (2009) Predatory senescence in ageing wolves. Ecol Lett 12:1347–1356PubMedCrossRefGoogle Scholar
  23. McNamara JM, Houston AI, Barta Z, Scheuerlein A, Fromhage L (2009) Deterioration, death and the evolution of reproductive restraint in late life. Proc R Soc Lond B 276:4061–4066CrossRefGoogle Scholar
  24. Mougin J-L (2002) Influence de la sénilité sur la réussite de la reproduction chez le puffin cendré Calonectris diomedea. Bol Mus Mun Funchal 53:27–34Google Scholar
  25. Mougin J-L, Jouanin C, Roux F (2000) Démographie du puffin cendré Calonectris diomedea de Selvagem Grande. Rev Ecol (Terre Vie) 55:275–290Google Scholar
  26. Némoz-Bertholet F, Aujard F (2003) Physical activity and balance performance as a function of age in a prosimian primate (Microcebus murinus). Exp Gerontol 38:407–414PubMedCrossRefGoogle Scholar
  27. Newton I (ed) (1989) Lifetime reproduction in birds. Academic, LondonGoogle Scholar
  28. Nisbet ICT (2001) Detecting and measuring senescence in wild birds: experience with long-lived seabirds. Exp Gerontol 36:833–843PubMedCrossRefGoogle Scholar
  29. Paredes SD, Terrón MP, Cubero J, Valero V, Barriga C, Reiter RJ, Rodríguez AB (2006) Comparative study of the activity/rest rhythms in young and old ringdove (Streptopelia risoria): correlation with serum levels of melatonin and serotonin. Chronobiol Int 23:779–793PubMedCrossRefGoogle Scholar
  30. Passos C, Navarro J, Giudici A, González-Solís J (2010) Effects of extra mass on the pelagic behavior of a seabird. Auk 127:100–107CrossRefGoogle Scholar
  31. Phalan B, Phillips RA, Silk JRD, Afanasyev V, Fukuda A, Fox J, Catry P, Higuchi H, Croxall JP (2007) Foraging behaviour of four albatross species by night and day. Mar Ecol Progr Ser 340:271–286CrossRefGoogle Scholar
  32. Ricklefs RE (2000) Intrinsic aging-related mortality in birds. J Avian Biol 31:103–111CrossRefGoogle Scholar
  33. Ricklefs RE (2008) The evolution of senescence from a comparative perspective. Funct Ecol 22:379–392CrossRefGoogle Scholar
  34. Ropert-Coudert Y, Wilson RP (2005) Trends and perspectives in animal-attached remote sensing. Front Ecol Environ 3:437–444CrossRefGoogle Scholar
  35. Sallis JF (2000) Age-related decline in physical activity: a synthesis of human and animal studies. Med Sci Sports Exerc 32:1598–1600PubMedCrossRefGoogle Scholar
  36. Sergio F, Blas J, Hiraldo F (2009) Predictors of floater status in a long-lived bird: a cross-sectional and longitudinal test of hypotheses. J Anim Ecol 78:109–118PubMedCrossRefGoogle Scholar
  37. Shaffer SA, Costa DP, Weimerskirch H (2001) Behavioural factors affecting foraging effort of breeding wandering albatross. J Anim Ecol 70:864–874CrossRefGoogle Scholar
  38. Siwak CT, Murphey HL, Muggenburg BA, Milgram NW (2002) Age-dependent decline in locomotor activity in dogs is environment specific. Physiol Behav 75:65–70PubMedCrossRefGoogle Scholar
  39. Smits JE, Bortolotti GR, Tella JL (1999) Simplifying the phytohaemagglutinin skin-testing technique in studies of avian immunocompetence. Funct Ecol 13:567–572CrossRefGoogle Scholar
  40. Stearns SC (1992) The evolution of life histories. Oxford University Press, OxfordGoogle Scholar
  41. Thibault J-C, Bretagnolle V, Rabouam C (1997) Calonectris diomedea Cory’s shearwater. BWP Update 1:75–98Google Scholar
  42. Thorup K, Alerstam T, Hake M, Kjellén M (2003) Bird orientation: compensation for wind drift in migrating raptors is age dependent. Proc R Soc Lond B (Suppl.) 270:S8–S11CrossRefGoogle Scholar
  43. Velando A, Drummond H, Torres R (2006) Senescent birds redouble reproductive effort when ill: confirmation of the terminal investment hypothesis. Proc R Soc Lond B 273:1443–1448CrossRefGoogle Scholar
  44. Vleck CM, Haussmann ME, Vleck D (2007) Avian senescence: underlying mechanisms. J Ornithol 148:S611–S624CrossRefGoogle Scholar
  45. Weimerskirch H, Guionnet T, Martin J, Shaffer SA, Costa DP (2000) Fast and fuel efficient? Optimal use of wind by flying albatrosses. Proc R Soc Lond B 267:1869–1874CrossRefGoogle Scholar
  46. Wooller RD, Bradley JS, Croxall JP (1992) Long-term population studies of seabirds. Trends Ecol Evol 7:111–114PubMedCrossRefGoogle Scholar
  47. Wunderle JM (1991) Age-specific foraging proficiency in birds. Curr Ornithol 8:273–324Google Scholar
  48. Yamamoto T, Takahashi A, Yoda K, Katsumata N, Watanabe S, Sato K, Trathan PN (2008) The lunar cycle affects at-sea behaviour in a pelagic seabird, the streaked shearwater Calonectris leucomelas. Anim Behav 76:1647–1652CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2010

Authors and Affiliations

  • Paulo Catry
    • 1
    • 2
  • José Pedro Granadeiro
    • 3
  • Jaime Ramos
    • 4
  • Richard A. Phillips
    • 5
  • Paulo Oliveira
    • 6
  1. 1.Eco-Ethology Research Unit, ISPALisbonPortugal
  2. 2.Museu Nacional de História NaturalLisbonPortugal
  3. 3.CESAMMuseu Nacional de História NaturalLisbonPortugal
  4. 4.IMAR-Institute of Marine Research, Department of ZoologyUniversity of CoimbraCoimbraPortugal
  5. 5.British Antarctic Survey Natural Environment Research CouncilCambridgeUK
  6. 6.Serviço do Parque Natural da MadeiraSecretaria Regional do Ambiente e dos Recursos NaturaisFunchalPortugal

Personalised recommendations