Advertisement

Journal of Ornithology

, Volume 151, Issue 3, pp 761–764 | Cite as

Identification of novel microsatellite loci in the sand martin, Riparia riparia, and cross-amplification of loci from other bird species

  • Wouter F. D. van Dongen
  • Gopi K. Munimanda
  • Jakob Augustin
  • Donald Blomqvist
  • Tibor Szép
  • Richard H. Wagner
Technical note

Abstract

We isolated and characterised six novel microsatellite loci for paternity analysis in the sand martin Riparia riparia, by screening an enriched genomic library. In addition, we tested 16 already published microsatellite markers, five of which were also polymorphic in the sand martin. Only one of these 11 loci exhibited evidence of null alleles, and all were polymorphic (mean H o = 0.68, range of number of alleles per locus = 4–24), making them suitable for individual heterozygosity quantification and paternity assessment in this species (exclusion probability of 11 unlinked loci = 0.999997).

Keywords

Sand Martin Riparia riparia Paternity Microsatellite Cross-amplification 

Notes

Acknowledgments

We thank Yoshan Moodley, Anna Grasse and Tomas Hrbek for technical advice during loci isolation and characterisation and Zsolt Nagy for assisting with field work. This research was funded by the Austrian Academy of Sciences and by OTKA grants (T042879, K69068) awarded to T.S. Blood samples were collected under permits issued by the Hortobágy National Park (22-66/2004).

References

  1. Alves MAS, Bryant DM (1998) Brood parasitism in the sand martin, Riparia riparia: evidence for two parasitic strategies in a colonial passerine. Anim Behav 56:1323–1331CrossRefPubMedGoogle Scholar
  2. Augustin J, Blomqvist D, Szép T, Szabo ZD, Wagner RH (2007) No evidence of genetic benefits from extra-pair fertilizations in female sand martins (Riparia riparia). J Ornithol 148:189–198CrossRefGoogle Scholar
  3. Bensch S, Price T, Kohn J (1997) Isolation and characterization of microsatellite loci in a Phylloscopus warbler. Mol Ecol 6:91–92CrossRefPubMedGoogle Scholar
  4. Double MC, Dawson D, Burke T, Cockburn A (1997) Finding the fathers in the least faithful bird: a microsatellite-based genotyping system for the superb fairy-wren Malurus cyaneus. Mol Ecol 6:691–693CrossRefGoogle Scholar
  5. Farias IP, Hrbek T, Brinkmann H, Sampaio I, Meyer A (2003) Characterization and isolation of DNA microsatellite primers for Arapaima gigas, an economically important but severely over-exploited fish species of the Amazon basin. Mol Ecol Notes 3:128–130CrossRefGoogle Scholar
  6. Griffith SC, Stewart IRK, Dawson DA, Owens IPF, Burke T (1999) Contrasting levels of extra-pair paternity in mainland and island populations of the house sparrow (Passer domesticus): is there an ‘island effect’? Biol J Linn Soc 68:303–316Google Scholar
  7. Hanotte O, Zanon C, Pugh A, Greig C, Dixon A, Burke T (1994) Isolation and characterization of microsatellite loci in a passerine bird: the reed bunting Emberiza schoeniclus. Mol Ecol 3:529–530CrossRefPubMedGoogle Scholar
  8. Hansson B, Bensch S, Hasselquist D, Lillandt B, Wennerberg L, von Schantz T (2000) Increase of genetic variation over time in a recently founded population of great reed warblers (Acrocephalus arundinaceus) revealed by microsatellites and DNA fingerprinting. Mol Ecol 9:1529–1538CrossRefPubMedGoogle Scholar
  9. Kalinowski S, Taper M, Marshall T (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106CrossRefPubMedGoogle Scholar
  10. Martinez JG, Soler JJ, Soler M, Møller AP, Burke T (1999) Comparative population structure and gene flow of a brood parasite, the great spotted cuckoo (Clamator glandarius), and its primary host, the magpie (Pica pica). Evolution 53:269–278CrossRefGoogle Scholar
  11. McDonald DB, Potts WK (1994) Cooperative display and relatedness among males in a lek-mating bird. Science 266:1030–1032CrossRefPubMedGoogle Scholar
  12. Pauliny A, Wagner RH, Augustin J, Szép T, Blomqvist D (2006) Age-independent telomere length predicts fitness in two bird species. Mol Ecol 15:1681–1687CrossRefPubMedGoogle Scholar
  13. Primmer CR, Møller AP, Ellegren H (1995) Resolving genetic relationships with microsatellite markers: a parentage testing system for the swallow Hirundo rustica. Mol Ecol 4:493–498CrossRefPubMedGoogle Scholar
  14. Primmer C, Møller AP, Ellegren H (1996) New microsatellites from the pied flycatcher Ficedula hypoleuca and the swallow Hirundo rustica genomes. Hereditas 124:281–283CrossRefPubMedGoogle Scholar
  15. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  16. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386Google Scholar
  17. Wagner RH (1993) The pursuit of extra-pair copulations by female birds: a new hypothesis of colony formation. J Theor Biol 163:333–346CrossRefGoogle Scholar
  18. Wagner RH (1998) Hidden leks: sexual selection and the clustering of avian territories. In: Parker PG, Burley N (eds) Avian reproductive tactics: female and male perspectives. Ornithological Monograph, vol 49. American Ornithologists’ Union, Washington, DC, pp 123–145Google Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2010

Authors and Affiliations

  • Wouter F. D. van Dongen
    • 1
    • 2
  • Gopi K. Munimanda
    • 1
  • Jakob Augustin
    • 3
  • Donald Blomqvist
    • 3
  • Tibor Szép
    • 4
  • Richard H. Wagner
    • 1
  1. 1.Konrad Lorenz Institute for EthologyViennaAustria
  2. 2.Departamento de Ciencias Ecológicas, Facultad de CienciasUniversidad de ChileSantiagoChile
  3. 3.Department of ZoologyUniversity of GothenburgGothenburgSweden
  4. 4.College of NyíregyházaInstitute of Environmental SciencesNyíregyházaHungary

Personalised recommendations