Skip to main content
Log in

Microflora in the crop of adult Dusky-billed Parrotlets (Forpus modestus)

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

We isolated aerobic and anaerobic facultative bacteria inhabiting the crop of adult Dusky-billed Parrotlets (Forpus modestus). We looked for bacteria capable of hydrolyzing starch, the most abundant polysaccharide in seeds. We compared our results with bacteria isolated from the crop of three species of doves with granivorous–frugivorous diet and three carnivore birds. Forpus modestus has 107–108 of colony formation units (CFU); these values were higher by one to three orders of magnitude compared with those observed in the other species studied. Bacillus pumilus, one of the most abundant bacteria isolated in F. modestus (6.03 × 106 CFU), was capable of hydrolyzing starch. We found higher diversity and abundance of bacteria in granivorous than in carnivorous birds or birds without a developed crop. Additionally, we found yeasts in the three species of doves. These findings suggest microbial activity in the crop, although its importance in food digestion needs to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Amit-Romach E, Sklan D, Uni Z (2004) Microflora ecology of the chicken intestine using 16S ribosomal DNA primers. Poult Sci 83:1093–1098

    Article  CAS  PubMed  Google Scholar 

  • Andrew D, Board R (1998) Microbiology of meat and poultry. Springer, New York

    Google Scholar 

  • Baele M, Devriese LA, Haesebrouck F (2001) Lactobacillus agilis is an important component of the pigeon crop flora. J Appl Microbiol 91:488–491

    Article  CAS  PubMed  Google Scholar 

  • Baele M, Devriese LA, Butaye P, Haesebrouck F (2002) Composition of enterococcal and streptococcal flora from pigeon intestines. J Appl Microbiol 92:348–351

    Article  CAS  PubMed  Google Scholar 

  • Barbosa TM, Serra CR, La Ragione RM, Woodward MJ, Henriques AO (2005) Screening for Bacillus isolates in the broiler gastrointestinal tract. Appl Environ Microbiol 71:968–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bangert RL, Cho BR, Widders PR, Stauber EH, Ward AC (1988a) A survey of the aerobic bacteria and fungi in the feces of healthy psittacine birds. Avian Dis 32:46–52

    Article  CAS  PubMed  Google Scholar 

  • Bangert RL, Ward AC, Stauber EH, Cho BR, Widders PR (1988b) A survey of the aerobic bacteria in the feces of captive raptors. Avian Dis 32:53–62

    Article  CAS  PubMed  Google Scholar 

  • Barton NWH, Houston DC (1994) Morphological adaptation of the digestive tract in relation to feeding ecology of raptors. J Zool 232:133–150

    Article  Google Scholar 

  • Bauchop T (1979) Rumen anaerobic fungi of cattle and sheep. Appl Environ Microbiol 38:148–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolton W (1965) Digestion in the crop of the fowl. Br Poult Sci 6:97

    Article  CAS  PubMed  Google Scholar 

  • Bryant MP (1972) Commentary on the Hungate technique for culture of anaerobic bacteria. Am J Clin Nutr 25:1324–1328

    Article  CAS  PubMed  Google Scholar 

  • Cutler SA, Rasmussen MA, Hensley MJ, Wilhelms KW, Griffith RW, Scanes CG (2005) Effect of Lactobacilli and lactose on Salmonella typhimurium colonization and microbial fermentation in the crop of the young turkey. Br Poult Sci 46:708–716

    Article  CAS  PubMed  Google Scholar 

  • Champ M, Szylit O, Raibaud P, Ait-Abdelkader N (1983) Amylase production by three Lactobacillus strains isolated from chicken crop. J Appl Bacteriol 55:487–493

    Article  CAS  PubMed  Google Scholar 

  • Dijkerman R, Ledeboer J, Op den Camp JHM, Prins RA, Van der Drift Ch (1997) The anaerobic fungus Neocallimastix sp. Strain L2: growth and production of (hemi) cellulolytic enzymes on a range of carbohydrate substrates. Curr Microbiol 34:91–96

    Article  CAS  PubMed  Google Scholar 

  • Dominguez-Bello MG, Lovera M, Suarez P, Michelangeli F (1993) Microbial digestive symbionts of the crop of the hoatzin (Opisthocomus hoazin): an avian foregut fermenter. Physiol Zool 66:374–383

    Article  Google Scholar 

  • Downs CT, Wirminghaus JO, Lawes MJ (2000) Anatomical and nutritional adaptations of the Speckled Mousebird (Colius striatus). Auk 117:791–794

    Article  Google Scholar 

  • Flammer K, Drewes LA (1988) Species-related differences in the incidence of gram-negative bacteria isolated from the cloaca of clinically normal psittacine birds. Avian Dis 32:79–83

    Article  CAS  PubMed  Google Scholar 

  • Fuller R (1977) The importance of Lactobacilli in maintaining normal microbial balance in the crop. Br Poult Sci 18:85–94

    Article  CAS  PubMed  Google Scholar 

  • Fuller R, Turvey A (1971) Bacteria associated with intestinal wall of fowl (Gallus domesticus). J Appl Bacteriol 34:617–622

    Article  CAS  PubMed  Google Scholar 

  • Grajal A, Strahl SD, Parra R, Domínguez-Bello MG, Neher A (1989) Foregut fermentation in the hoatzin, a neotropical avian folivore. Science 245:1131–1134

    Article  Google Scholar 

  • Hilton GM, Houston DC, Barton NWH, Furness RW (1999) Ecological constraints on digestive physiology in carnivorous and piscivorous birds. J Exp Zool 283:365–376

    Article  Google Scholar 

  • Hilty SL (2003) The birds of Venezuela. 2nd edn. Princeton University, Pinceton

    Book  Google Scholar 

  • Huntington GB (1997) Starch utilization by ruminants: from basics to the bunk. J Anim Sci 75:852–867

    Article  CAS  PubMed  Google Scholar 

  • Janiga M, Sedlárová A, Rigg R, Novotná M (2007) Patterns of prevalence among bacterial communities of alpine accentors (Prunella collaris) in the Tatra Mountains. J Ornithol 148:135–143

    Article  Google Scholar 

  • Kamra DN (2005) Rumen microbial ecosystem. Curr Sci 89:124–134

    CAS  Google Scholar 

  • Karasov WH (1990) Digestion in birds: chemical and physiological determinants and ecology implications. Stud Avian Biol 13:391–415

    Google Scholar 

  • Klasing KC (1998) Comparative avian nutrition. CAB International, UK

    Google Scholar 

  • Koniarova I (1991) Counts of selected strict and facultatively anaerobic microorganisms in the crop and appendix of chickens and their adhesion characteristics. Vet Med 36:349–354

    CAS  Google Scholar 

  • Kotarski SF, Waniska RD, Thurn KK (1992) Starch hydrolysis by the ruminal microflora. J Nutr 122:178–190

    Article  CAS  PubMed  Google Scholar 

  • Lentino M (2006) Ornitofauna de los ecosistemas acuáticos de la confluencia de los ríos Orinoco y Ventuari In: Lasso CA, Señarìs JC, Alonso LE, Flores A (eds) Evaluación Rápida de la Biodiversidad de los Ecosistemas Acuáticos en la Confluencia de los ríos Orinoco y Ventuari, Estado Amazonas (Venezuela). Bol RAP de Evaluación Biológica (30):136–140

  • Lu J, Idris U, Harmon B, Hofacre Ch, Maurer JJ, Lee MD (2003) Diversity and succession of the intestinal bacteria community of the maturing broiler chicken. Appl Environ Microbiol 69:6816–6824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madigan MT, Martinko JM (2006) BROCK: biology of microorganismos. 11th edn. Pearson Prentice Hall, N.J.

    Google Scholar 

  • Malyszko E, Pinowski J, Kozlowski S, Bernacka B, Pepinki W, Kruszewicz A (1991) Auto- and allochtonous flora and fauna of the intestinal tract of Passer domesticus and Passer montanus nestlings. In: Proceeding of international symposium of the working group on granivorous birds. Poland, pp 129–137

  • Mountfort D, Asher RA (1988) Production of alpha-amylase by the ruminal anaerobic fungus Neocallimastix frontalis. Appl Environ Microbiol 54:2293–2299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pacheco MA, García-Amado MA, Bosque C, Domínguez-Bello MG (2004) Bacteria in the crop of the seed-eating Green-Rumped Parrotlet. Condor 106:139–143

    Article  Google Scholar 

  • Paul SS, Kamra ND, Sastry VR, Sahu NP, Agarwal N (2004) Effect of anaerobic fungi in vitro feed digestion by mixed rumen microflora buffalo. Reprod Nutr Dev 44:313–319

    Article  PubMed  Google Scholar 

  • Robbins ChT (1993) Wildlife feeding and nutrition, 2nd edn. Academic Press, California

    Google Scholar 

  • Rodríguez L, Pérez E, Rial A (2006) Lista preliminary de las plantas vasculares indentificadas durante el AquaRAP Orinoco-Ventuari, 2003. In: Lasso CA, Señarìs JC, Alonso LE, Flores A (eds) Evaluación Rápida de la Biodiversidad de los Ecosistemas Acuáticos en la Confluencia de los ríos Orinoco y Ventuari, Estado Amazonas (Venezuela). Bol RAP de Evaluación Biológica (30):157–180

  • Rodríguez-Mahecha JV, Hernández-Camacho JI (2002) Loros de Colombia. Conservation International Tropical Field Guide Series. Bogotá, Colombia

  • Thareja A, Puniya AK, Goel G, Nagpal R, Sehgal JP, Singh PK, Singh K (2006) In vitro degradation of wheat straw by anaerobic fungi from small ruminants. Arch Anim Nutr 60:412–417

    Article  CAS  PubMed  Google Scholar 

  • Shetty S, Sridhar KR, Shenoy KB, Hegde SN (1990) Observations on bacteria associated with pigeon crop. Folia Microbiol 35:240–244

    Article  CAS  Google Scholar 

  • Smith DP, Berrang ME (2006) Prevalence and number of bacteria in broiler crop and gizzard contents. Poult Sci 85:144–147

    Article  CAS  PubMed  Google Scholar 

  • Stevens CE, Hume ID (1998) Comparative physiology of the vertebrate digestive system. Cambridge University Press, Cambridge

    Google Scholar 

  • Soedarmo D, Kare MR, Wasserman RH (1961) observations on the removal of sugar from the mouth and crop of the chicken. Poult Sci 40:123–141

    Article  CAS  Google Scholar 

  • Van Soest PJ (1982) Nutrition ecology of the ruminant. Cornell University Press, Ithaca

    Google Scholar 

  • Warren RAJ (1996) Microbial hydrolysis of polysaccharides. Annu Rev Microbiol 50:183–212

    Article  CAS  PubMed  Google Scholar 

  • Ziswiler V, Farner DS (1972) Digestion and the digestive system. In: Farner DS, King JR, Parkes KC (eds) Avian biology, vol 2. Academic Press, New York, pp 343–430

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank Y. Carreño, at “Colección Ornitológica Phelps”, Caracas, Venezuela for his assistance in samples collection. We thank R. Isea from CeCALCULA and N. Reyes at IVIC for their overall support. We thank A. McCollum and A. A. Escalante who made valuable suggestions that improved the manuscript. Conservation International-Venezuela and “Fundación Cisneros” provided financial support. F. Ibarra from Manaka Fishing Lodge and J. G. León from Siscomar provided support of field work in Ventuari River and Serranía de Lajas. All the experiments complied with the current laws of the Bolivarian Republic of Venezuela. Specimens were collected with the authorization of the “Ministerio del Poder Popular para el Ambiente” under the number 01-03-03-113 granted to the “Colección Ornitológica Phelps”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Andreína Pacheco.

Additional information

Communicated by C.G. Guglielmo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pacheco, M.A., Lentino, M., Mata, C. et al. Microflora in the crop of adult Dusky-billed Parrotlets (Forpus modestus). J Ornithol 149, 621–628 (2008). https://doi.org/10.1007/s10336-008-0307-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-008-0307-9

Keywords

Navigation