Journal of Ornithology

, Volume 149, Issue 4, pp 495–506 | Cite as

Evidence from DNA nucleotide sequences and ISSR profiles indicates paraphyly in subspecies of the Southern Grey Shrike (Lanius meridionalis)

  • Javier GonzalezEmail author
  • Michael Wink
  • Eduardo Garcia-del-Rey
  • Guillermo Delgado Castro
Original Article


We obtained DNA sequence data from mitochondrial (cytochrome b) and nuclear genes (myoglobin and ornithine decarboxylase) to reconstruct the phylogenetic relationships among eight species of shrikes (Lanius). Phylogenetic analyses based on maximum parsimony, maximum likelihood and Bayesian inference all converged into a congruent topology and defined several well-supported clades. Our multi-gene approach based on nucleotide sequences from fast-evolving and conserved genes strongly supported the paraphyly of Southern Grey Shrikes (Lanius meridionalis). The Canary Islands subspecies (L. m. koenigi) differed significantly from its European counterpart (L. m. meridionalis). Furthermore, the genetic distinctiveness of L. m. koenigi was confirmed by ISSR genomic fingerprinting. By contrast, we did not find evidence to distinguish the Canarian Southern Grey Shrike from L. m. algeriensis on the African mainland (Tunisia), and therefore these two taxa may be considered as synonymous. Together, they correspond to a separate species. The origin of the taxa investigated in this study might have originated about 6 Mya at the Miocene/Pliocene boundary when a remarkable worldwide faunal turnover and global vegetation change occurred. The Lanius genus represents a complex and taxonomically challenging group that requires additional research.


Cytochrome b Myoglobin Ornithine decarboxylase ISSR Phylogeny 



We are grateful to Gobierno de Canarias and the Cabildo Insular of Tenerife, Gran Canaria, Fuerteventura and Lanzarote for authorising the collection of biological samples which was partly funded by the Sociedad Ornitológica Canaria (SOC). We thank D. Concepción for collecting samples on Lanzarote. We thank P. Tryjanowski (Adam Mickiewicz University, Poland) and U. Olsson (Gothenburg University, Sweden) who provided samples of Lanius excubitor and L. meridionalis algeriensis, respectively. Thanks also to D. Ristow, G. Nikolaus, D. Guicking, T. van Wyk, H.-H. Witt, P. Heidrich and G.-M. Heinze for providing samples. We thank Prof. Dr. H. Bock (Managing Director of IWR) and S. Friedel for access to parallel computing facilities at the Interdisciplinary Center for Scientific Computing (IWR, Heidelberg University). We thank H. Sauer-Gürth who provided valuable technical assistance in our laboratory. M. Haase, C. Dietzen, T.C.H. Cole and Dr. M. Förschler provided valuable literature and comments to improve this manuscript. All experiments comply with the current laws of Germany.


  1. Allen EA, Omland KE (2003) Novel intron phylogeny supports plumage convergence in orioles (Icterus). Auk 120:961–969CrossRefGoogle Scholar
  2. Altekar G, Dwarkadas S, Huelsenbeck JP, Ronquist F (2004) Parallel metropolis-coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics 20:407–415PubMedCrossRefGoogle Scholar
  3. Bornet B, Branchard M (2001) Nonanchored inter simple sequence repeat (ISSR) markers: reproducible and specific tools for genome fingerprinting. Plant Mol Biol Reptr 19:209–215CrossRefGoogle Scholar
  4. Castillo C, López M, Martín M, Rando JC (1996) La paleontología de vertebrados en Canarias. Rev Esp Paleontol No. Extraordinario:237–247Google Scholar
  5. Cerling TE, Harris JM, MacFadden BJ, Leakey MG, Quade J, Eisenmann V, Ehleringer JR (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature 389:153–158CrossRefGoogle Scholar
  6. Cicero C, Johnson NK (2001) Higher-level phylogeny of New World vireos (Aves: Vireonidae) based on sequences of multiple mitochondrial DNA genes. Mol Phylogenet Evol 20:27–40PubMedCrossRefGoogle Scholar
  7. Clarke T (2006) Birds of the Atlantic islands. Christopher Helm, LondonGoogle Scholar
  8. Concepción D (1992) Avifauna del Parque Nacional de Timanfaya. Censo y análisis. Red de Parques Nacionales. Icona, Santa Cruz de TenerifeGoogle Scholar
  9. Delgado G (2001) Fauna vertebrada nativa terrestre. In: Fernández-Palacios JM, Martín JL (eds) Naturaleza de las Islas Canarias. Ecología y conservación. Publicaciones Turquesa, Santa Cruz de Tenerife, pp 213–217Google Scholar
  10. Dietzen C, Witt H-H, Wink M (2003) The phylogeographic differentiation of the European robin Erithacus rubecula on the Canary Islands revealed by mitochondrial DNA sequence data and morphometrics: evidence for a new robin taxon on Gran Canaria? Avian Sci 3:115–131Google Scholar
  11. Dietzen C, Hackenberg C, Heyne K-H, Sauer-Gürth H, Staudter H, Wink M (2006) Genetically confirmed interbreeding between western Bonelli’s warbler (Phylloscopus bonelli) and wood warbler (P. sibilatrix). J Ornithol 148:85–90CrossRefGoogle Scholar
  12. Dietzen C, Garcia-del-Rey E, Delgado G, Wink M (2007a) Phylogeography of the blue tit (Parus teneriffae––group) on the Canary Islands based on mitochondrial DNA sequence data and morphometrics. J Ornithol 149:1–12CrossRefGoogle Scholar
  13. Dietzen C, Garcia-del-Rey E, Delgado G, Wink M (2007b) Phylogenetic differentiation of Sylvia species (Aves: Passeriformes) of the Atlantic islands (Macaronesia) based on mitochondrial DNA sequence data and morphometrics. Biol J Linn Soc (in press)Google Scholar
  14. Emerson BC, Oromi P (2005) Diversification of the forest beetle genus Tarphius on the Canary Islands, and the evolutionary origins of island endemics. Evolution 59:586–598PubMedGoogle Scholar
  15. Friesen VL (2000) Introns. In: Baker AJ (ed) Molecular methods in ecology. Blackwell Science, Oxford, pp 274–294Google Scholar
  16. Fuchs J, Bowie RCK, Fjeldså J, Pasquet E (2004) Phylogenetic relationships of the African bush-shrikes and helmet-shrikes (Passeriformes: Malaconotidae). Mol Phylogenet Evol 33:428–439PubMedCrossRefGoogle Scholar
  17. Garcia-del-Rey E, Delgado G, Gonzalez J, Wink M (2007) Canary Island great spotted woodpecker (Dendrocopos major) has distinct mtDNA. J Ornithol 148:531–536CrossRefGoogle Scholar
  18. Gubitz T, Thorpe RS, Malhotra A (2000) Phylogeography and natural selection in the Tenerife gecko Tarentola delalandii: testing historical and adaptive hypotheses. Mol Ecol 9:1213–1221PubMedCrossRefGoogle Scholar
  19. Gutiérrez-Corchero F, Arruga MV, Sanz L, García C, Hernández MA, Campos F (2002) Using FTA cards to store avian blood samples for genetic studies. Their application in sex determination. Mol Ecol Notes 2:75–77CrossRefGoogle Scholar
  20. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  21. Harris T, Franklin K (2000) Shrikes & bush-shrikes. Black, LondonGoogle Scholar
  22. Hernández MA, Campos F, Gutiérrez-Corchero F, Amezcua A (2004) Identification of Lanius species and subspecies using tandem repeats in the mitochondrial DNA control region. Ibis 146:227–230CrossRefGoogle Scholar
  23. Heslewood MM, Elphinstone MS, Tidemann SC, Baverstock PR (1998) Myoglobin intron variation in the gouldian finch Erythrura gouldiae assessed by temperature gradient gel electrophoresis. Electrophoresis 19:142–151PubMedCrossRefGoogle Scholar
  24. Irestedt M, Fjeldså J, Ericson PG (2006a) Evolution of the ovenbird-woodcreeper assemblage (Aves: Furnariidae)––major shifts in nest architecture and adaptive radiation. J Avian Biol 37:260–272CrossRefGoogle Scholar
  25. Irestedt M, Ohlson JI, Zuccon D, Kallersjo M, Ericson PGP (2006b) Nuclear DNA from old collections of avian study skins reveals the evolutionary history of the Old World suboscines (Aves, Passeriformes). Zool Scr 35:567–580CrossRefGoogle Scholar
  26. Kantety RV, Zeng X, Bennetzen JL, Zehr BE (1995) Assessment of genetic diversity in dent and popcorn (Zea mays L.) inbred lines using inter-simple sequence repeat (ISSR) amplification. Mol Breed 1:365–373CrossRefGoogle Scholar
  27. Lefranc N, Worfolk T (1997) Shrikes. A guide to the shrikes of the world. Pica, TonbridgeGoogle Scholar
  28. Maddison WP (1997) Gene trees in species trees. Syst Biol 46:523–536CrossRefGoogle Scholar
  29. McGregor CE, Lambert CA, Greyling MM, Louw JH, Warnich L (2000) A comparative assessment of DNA fingerprinting techniques (RAPD, ISSR, AFLP and SSR) in tetraploid potato (Solanum tuberosum L.) germplasm. Euphytica 113:135–144CrossRefGoogle Scholar
  30. Moore WS, DeFilippis VR (1997) The window of taxonomic resolution for phylogenies based on mitochondrial cytochrome b. In: Mindell DP (ed) Avian molecular evolution and systematics. Academic Press, San Diego, pp 83–119CrossRefGoogle Scholar
  31. Mundy NI, Helbig AJ (2004) Origin and evolution of tandem repeats in the mitochondrial DNA control region of shrikes (Lanius spp.). J Mol Evol 59:250–257PubMedCrossRefGoogle Scholar
  32. Mundy NI, Winchell CS, Woodruff DS (1996) Tandem repeats and heteroplasmy in the mitochondrial DNA control region of the loggerhead shrike (Lanius ludovicianus). J Hered 87:21–26PubMedGoogle Scholar
  33. Päckert M, Dietzen C, Martens J, Wink M, Kvist L (2006) Radiation of Atlantic goldcrests Regulus regulus spp.: evidence of a new taxon from the Canary Islands. J Avian Biol 37:364–380CrossRefGoogle Scholar
  34. Pamilo P, Nei M (1988) Relationships between gene trees and species trees. Mol Biol Evol 5:568–583PubMedGoogle Scholar
  35. Panov EN (1995) Superspecies of shrikes in the former USSR. In: Yosef R, Lohrer FE (eds) Shrikes (Laniidae) of the world: biology and conservation. Camarillo, USA, pp 26–33Google Scholar
  36. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  37. Rando JC, Perera MA (1994) Primeros datos de ornitofagia entre los aborígenes de Fuerteventura (Islas Canarias). Archaeofauna 3:13–19Google Scholar
  38. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  39. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  40. Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504PubMedCrossRefGoogle Scholar
  41. Simmons MP, Zhang L-B, Webb CT, Müller K (2007) A penalty of using anonymous dominant markers (AFLPs, ISSRs, and RAPDs) for phylogenetic inference. Mol Phylogenet Evol 42:528–542PubMedCrossRefGoogle Scholar
  42. Slade RW, Moritz C, Heideman A, Hale PT (1993) Rapid assessment of single-copy nuclear DNA variation in diverse species. Mol Ecol 2:359–373PubMedCrossRefGoogle Scholar
  43. Sorenson MD, Ast JC, Dimcheff DE, Yuri T, Mindell DP (1999) Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Mol Phylogenet Evol 12:105–114PubMedCrossRefGoogle Scholar
  44. Swofford DL (2002) PAUP*, phylogenetic analysis using parsimony (and other methods), version 4.0b10a. Sinauer, SunderlandGoogle Scholar
  45. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA 4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  46. Treutlein J, Smith GF, Van Wyk B-E, Wink M (2003) Phylogenetic relationships in Asphodelaceae (subfamily Alooideae) inferred from chloroplast DNA sequences (rbcL, matK) and from genomic fingerprinting (ISSR). Taxon 52:193–207CrossRefGoogle Scholar
  47. Wink M, Guicking D, Fritz U (2001) Molecular evidence of hybrid origin of Mauremys iversoni Pritchard et McCord, 1991, and Mauremys pritchardi McCord, 1997 (Reptilia: Testudines: Bataguridae). Zool Abh Staatl Mus Tierkunde Dresden 51:41–50Google Scholar
  48. Wolfe AD, Randle CP (2001) Relationships within and among species of the holoparasitic genus Hyobanche (Orobanchaceae) inferred from ISSR banding patterns and nucleotide sequences. Syst Biol 26:120–130Google Scholar
  49. Wolfe AD, Xiang Q-Y, Kephart SR (1998) Assessing hybridization in natural populations of Penstemon (Scrophulariaceae) using hypervariable intersimple sequence repeat (ISSR) bands. Mol Ecol 7:1107–1125PubMedCrossRefGoogle Scholar
  50. Worfolk T (2000) Identification of red-backed, isabelline and brown shrikes. Dutch Birding 22:323–362Google Scholar
  51. Zietkiewics E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2008

Authors and Affiliations

  • Javier Gonzalez
    • 1
    Email author
  • Michael Wink
    • 1
  • Eduardo Garcia-del-Rey
    • 2
  • Guillermo Delgado Castro
    • 3
  1. 1.Institut für Pharmazie und Molekulare BiotechnologieRuprecht-Karls-Universität HeidelbergHeidelbergGermany
  2. 2.Departamento de EcologíaFacultad de Biología, Universidad de La LagunaLa LagunaSpain
  3. 3.Museo de Ciencias NaturalesOrganismo Autónomo de Museos y CentrosSanta Cruz de TenerifeSpain

Personalised recommendations