Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271
PubMed
CAS
Google Scholar
Alexander MP, Naeser MA, Palumbo CL (1987) Correlations of subcortical CT lesion sites and aphasia profiles. Brain 110:961–991
PubMed
Google Scholar
Barris RW, Schuman MD, Schuman HR (1953) Bilateral anterior cingulated gyrus lesions: syndrome of the anterior cingulate gyri. Neurology 3:44–52
PubMed
CAS
Google Scholar
Bechtereva NP, Bundzen PV, Gogolitsin YL, Malyshev VN, Perepelkin PD (1979) Neurophysiological codes of words in subcortical structures of the human brain. Brain Lang 7:143–163
PubMed
CAS
Google Scholar
Beiser DG, Hua SE, Houk JC (1997) Network models of the basal ganglia. Curr Opin Neurobiol 7:185–190
PubMed
CAS
Google Scholar
Benson DF, Ardila A (1996) Aphasia: a clinical perspective. Oxford University Press, New York
Google Scholar
Berman IW (1981) Musical functioning, speech lateralization and the amusias. S Afr Med J 59:78–81
PubMed
CAS
Google Scholar
Bookheimer SY, Zeffiro TA, Blaxton TA, Gaillard PW, Theodore WH (2000) Activation of language cortex with automatic speech tasks. Neurology 55:1151–1157
PubMed
CAS
Google Scholar
Bottjer SW, Johnson F (1997) Circuits, hormones, and learning: vocal behavior in songbirds. J Neurobiol 33:602–618
PubMed
CAS
Google Scholar
Bottjer SW, Miesner EA, Arnold AP (1984) Forebrain lesions disrupt development but not maintenance of song in passerine birds. Science 224:901–903
PubMed
CAS
Google Scholar
Brown J (1965) Loss of vocalizations caused by lesions in the nucleus mesencephalicus lateralis of the Redwinged Blackbird. Am Zool 5:693
Google Scholar
Brown S, Martinez MJ, Hodges DA, Fox PT, Parsons LM (2004) The song system of the human brain. Brain Res Cogn Brain Res 20:363–375
PubMed
Google Scholar
Brown S, Martinez MJ, Parsons LM (2006) Music and language side by side in the brain: a PET study of the generation of melodies and sentences. Eur J Neurosci 23:2791–2803
PubMed
Google Scholar
Brown S, Ngan E, Liotti M (2007) A Larynx area in the human motor cortex. Cereb Cortex (in press)
Buckner RL, Kelley WM, Petersen SE (1999) Frontal cortex contributes to human memory formation. Nat Neurosci 2:311–314
PubMed
CAS
Google Scholar
Carr CE, Code RA (2000) The central auditory system of reptiles and birds. In: Dooling RJ, Fay RR, Popper AN (eds) Comparative hearing: birds and reptiles, vol 13. Springer, New York Berlin Heidelberg, pp 197–248
Google Scholar
Crosson B, Sadek JR, Bobholz JA et al (1999) Activity in the paracingulate and cingulate sulci during word generation: an fMRI study of functional anatomy. Cereb Cortex 9:307–316
PubMed
CAS
Google Scholar
Cummings JL (1993) Frontal-subcortical circuits and human behavior. Arch Neurol 50:873–880
PubMed
CAS
Google Scholar
Damasio AR, Damasio H, Rizzo M, Varney N, Gersh F (1982) Aphasia with nonhemorrhagic lesions in the basal ganglia and internal capsule. Arch Neurol 39:15–24
PubMed
CAS
Google Scholar
Doupe AJ, Kuhl PK (1999) Birdsong and human speech: common themes and mechanisms. Annu Rev Neurosci 22:567–631
PubMed
CAS
Google Scholar
Dronkers NF (1996) A new brain region for coordinating speech articulation. Nature 384:159–161
PubMed
CAS
Google Scholar
Durand SE, Heaton JT, Amateau SK, Brauth SE (1997) Vocal control pathways through the anterior forebrain of a parrot (Melopsittacus
undulatus). J Comp Neurol 377:179–206
PubMed
CAS
Google Scholar
Dusterhoft F, Hausler U, Jurgens U (2004) Neuronal activity in the periaqueductal gray and bordering structures during vocal communication in the squirrel monkey. Neuroscience 123:53–60
PubMed
CAS
Google Scholar
Esposito A, Demeurisse G, Alberti B, Fabbro F (1999) Complete mutism after midbrain periaqueductal gray lesion. Neuroreport 10:681–685
PubMed
CAS
Google Scholar
Evans SE (2000) General discussion II: amniote evolution. In: Bock GR, Chichester CG (eds) Evolutionary developmental biology of the cerebral cortex, vol 228. Wiley, New York, pp 109–113
Google Scholar
Farries MA (2001) The oscine song system considered in the context of the avian brain: lessons learned from comparative neurobiology. Brain Behav Evol 58:80–100
PubMed
CAS
Google Scholar
Farries MA, Perkel DJ (2002) A telencephalic nucleus essential for song learning contains neurons with physiological characteristics of both striatum and globus pallidus. J Neurosci 22:3776–3787
PubMed
CAS
Google Scholar
Fortune ES, Margoliash D (1995) Parallel pathways converge onto HVc and adjacent neostriatum of adult male zebra finches (Taeniopygia guttata). J Comp Neurol 360:413–441
PubMed
CAS
Google Scholar
Foster EF, Bottjer SW (2001) Lesions of a telencephalic nucleus in male zebra finches: influences on vocal behavior in juveniles and adults. J Neurobiol 46:142–165
PubMed
CAS
Google Scholar
Fried I, Ojemann GA, Fetz EE (1981) Language-related potentials specific to human language cortex. Science 212:353–356
PubMed
CAS
Google Scholar
Fried I, Katz A, McCarthy G, Sass KJ, Williamson P, Spencer SS, Spencer DD (1991) Functional organization of human supplementary motor cortex studied by electrical stimulation. J Neurosci 11:3656–3666
PubMed
CAS
Google Scholar
Gahr M (2000) Neural song control system of hummingbirds: comparison to swifts, vocal learning (Songbirds) and nonlearning (Suboscines) passerines, and vocal learning (Budgerigars) and nonlearning (Dove, owl, gull, quail, chicken) nonpasserines. J Comp Neurol 426:182–196
PubMed
CAS
Google Scholar
Geschwind N (1979) Specializations of the human brain. Sci Am 241:180–199
PubMed
CAS
Article
Google Scholar
Gobes SM, Bolhuis JJ (2007) Birdsong memory: a neural dissociation between song recognition and production. Curr Biol 17:789–793
PubMed
CAS
Google Scholar
Gracco VL, Tremblay P, Pike B (2005) Imaging speech production using fMRI. Neuroimage 26:294–301
PubMed
Google Scholar
Graff-Radford NR, Damasio H, Yamada T, Eslinger PJ, Damasio AR (1985) Nonhaemorrhagic thalamic infarction. Clinical, neuropsychological and electrophysiological findings in four anatomical groups defined by computerized tomography. Brain 108:485–516
PubMed
Google Scholar
Hahnloser RHR, Kozhevnikov AA, Fee MS (2002) An ultra-sparse code underlies the generation of neural sequences in a songbird. Nature 419:65–70
PubMed
CAS
Google Scholar
Halsema KA, Bottjer SW (1991) Lesioning afferent input to a forebrain nucleus disrupts vocal learning in zebra finches. Neurosciences 17:1052
Google Scholar
Hauser MD, Chomsky N, Fitch WT (2002) The faculty of language: what is it, who has it, and how did it evolve? Science 298:1569–1579
PubMed
CAS
Google Scholar
Hessler NA, Doupe AJ (1999) Singing-related neural activity in a dorsal forebrain-basal ganglia circuit of adult zebra finches. J Neurosci 19:10461–10481
PubMed
CAS
Google Scholar
Hinke R, Hu X, Stillman A, Kim S, Merkle H, Salmi R, Ugurbil K (1993) Functional magnetic resonance imaging of Broca’s area during internal speech. Neuroreport 4:675–678
PubMed
CAS
Google Scholar
Janik VM, Slater PJB (1997) Vocal learning in mammals. Adv Study Behav 26:59–99
Article
Google Scholar
Jarvis ED (2004a) Brains and birdsong. In: Marler P, Slabbekoorn H (eds) Nature’s music: the science of bird song. Elsevier/Academic, San Diego, pp 226–271
Google Scholar
Jarvis ED (2004b) Learned birdsong and the neurobiology of human language. Ann NY Acad Sci 1016:749–777
PubMed
Google Scholar
Jarvis ED, Mello CV (2000) Molecular mapping of brain areas involved in parrot vocal communication. J Comp Neurol 419:1–31
PubMed
CAS
Google Scholar
Jarvis ED, Nottebohm F (1997) Motor-driven gene expression. Proc Natl Acad Sci USA 94:4097–4102
PubMed
CAS
Google Scholar
Jarvis ED, Scharff C, Grossman MR, Ramos JA, Nottebohm F (1998) For whom the bird sings: context-dependent gene expression. Neuron 21:775–788
PubMed
CAS
Google Scholar
Jarvis ED, Ribeiro S, da Silva ML, Ventura D, Vielliard J, Mello CV (2000) Behaviourally driven gene expression reveals song nuclei in hummingbird brain. Nature 406:628–632
PubMed
CAS
Google Scholar
Jarvis ED, Gunturkun O, Bruce L et al (2005) Avian brains and a new understanding of vertebrate brain evolution. Nat Rev Neurosci 6:151–159
PubMed
CAS
Google Scholar
Johnson MD, Ojemann GA (2000) The role of the human thalamus in language and memory: evidence from electrophysiological studies. Brain Cogn 42:218–230
PubMed
CAS
Google Scholar
Jonas S (1981) The supplementary motor region and speech emission. J Commun Disord 14:349–373
PubMed
CAS
Google Scholar
Jurgens U (1994) The role of the periaqueductal grey in vocal behaviour. Behav Brain Res 62:107–117
PubMed
CAS
Google Scholar
Jurgens U (1995) Neuronal control of vocal production in non-human and human primates. In: Zimmermann E, Newman JD, Jurgens U (eds) Current topics in primate vocal communication. Plenum Press, New York, pp 199–206
Google Scholar
Jurgens U (1998) Neuronal control of mammalian vocalization, with special reference to the squirrel monkey. Naturwissenschaften 85:376–388
PubMed
CAS
Google Scholar
Jurgens U, Kirzinger A, von Cramon D (1982) The effects of deep-reaching lesions in the cortical face area on phonation. A combined case report and experimental monkey study. Cortex 18:125–139
PubMed
CAS
Google Scholar
Kao MH, Doupe AJ, Brainard MS (2005) Contributions of an avian basal ganglia-forebrain circuit to real-time modulation of song. Nature 433:638–643
PubMed
CAS
Google Scholar
Kirzinger A, Jurgens U (1982) Cortical lesion effects and vocalization in the squirrel monkey. Brain Res 233:299–315
PubMed
CAS
Google Scholar
Klein D, Zatorre R, Milner B, Meyer E, Evans A (1994) Left putaminal activation when speaking a second language: evidence from PET. Neuroreport 5:2295–2297
PubMed
CAS
Google Scholar
Kobayashi K, Uno H, Okanoya K (2001) Partial lesions in the anterior forebrain pathway affect song production in adult Bengalese finches. Neuroreport 12:353–358
PubMed
CAS
Google Scholar
Konishi M (1965) The role of auditory feedback in the control of vocalization in the white-crowned sparrow. Z Tierpsychol 22:770–783
PubMed
CAS
Google Scholar
Kuypers HGJM (1958a) Corticobulbar connexions to the pons and lower brain-stem in man. Brain 81:364–388
PubMed
CAS
Google Scholar
Kuypers HGJM (1958b) Some projections from the peri-central cortex to the pons and lower brain stem in monkey and chimpanzee. J Comp Neurol 100:221–255
Google Scholar
Larson CR (1991) On the relation of PAG neurons to laryngeal and respiratory muscles during vocalization in the monkey. Brain Res 552:77–86
PubMed
CAS
Google Scholar
Larson CR, Yajima Y, Ko P (1994) Modification in activity of medullary respiratory-related neurons for vocalization and swallowing. J Neurophysiol 71:2294–2304
PubMed
CAS
Google Scholar
Lavenex PB (2000) Lesions in the budgerigar vocal control nucleus NLc affect production, but not memory, of english words and natural vocalizations. J Comp Neurol 421:437–460
PubMed
CAS
Google Scholar
Leicester J (1980) Central deafness and subcortical motor aphasia. Brain Lang 10:224–242
PubMed
CAS
Google Scholar
Lieberman P (2000) Human language and our reptilian brain: the subcortical bases of speech, syntax, and thought. Harvard University Press, Cambridge
Google Scholar
Lieberman P (2002) On the nature and evolution of the neural bases of human language. Am J Phys Anthropol Suppl 35:36–62
Google Scholar
MacDougall-Shackleton SA, Hulse SH, Ball GF (1998) Neural bases of song preferences in female zebra finches (Taeniopygia guttata). Neuroreport 9:3047–3052
PubMed
CAS
Google Scholar
Matsumoto R, Nair DR, LaPresto E, Najm I, Bingaman W, Shibasaki H, Luders HO (2004) Functional connectivity in the human language system: a cortico-cortical evoked potential study. Brain 127:2316–2330
PubMed
Google Scholar
McCasland JS (1987) Neuronal control of bird song production. J Neurosci 7:23–39
PubMed
CAS
Google Scholar
Mello CV, Vates GE, Okuhata S, Nottebohm F (1998) Descending auditory pathways in the adult male zebra finch (Taeniopygia guttata). J Comp Neurol 395:137–160
PubMed
CAS
Google Scholar
Mohr JP (1976) Broca’s area and Broca’s aphasia. In: Whitaker H, Whitaker HA (eds) Studies in neurolinguistics, vol 1. Academic, New York, pp 201–235
Google Scholar
Nielsen JM, Jacobs LL (1951) Bilateral lesions of the anterior cingulated gyri. Bull Los Angel Neuro Soc 16:231–234
PubMed
CAS
Google Scholar
Nottebohm F (1972) The origins of vocal learning. Am Nat 106:116–140
Google Scholar
Nottebohm F, Stokes TM, Leonard CM (1976) Central control of song in the canary, Serinus canarius. J Comp Neurol 165:457–486
PubMed
CAS
Google Scholar
Nottebohm F, Alvarez-Buylla A, Cynx J, Kirn J, Ling CY, Nottebohm M, Suter R, Tolles A, Williams H (1990) Song learning in birds: the relation between perception and production. Philos Trans R Soc Lond B 329:115–124
CAS
Google Scholar
Ojemann GA (1991) Cortical organization of language. J Neurosci 11:2281–2287
PubMed
CAS
Google Scholar
Ojemann GA (2003) The neurobiology of language and verbal memory: observations from awake neurosurgery. Int J Psychophysiol 48:141–146
PubMed
Google Scholar
Okanoya K (2007) Language evolution and an emergent property. Curr Opin Neurobiol 17:271–276
PubMed
CAS
Google Scholar
Palmer ED, Rosen HJ, Ojemann JG, Buckner RL, Kelley WM, Petersen SE (2001) An event-related fMRI study of overt and covert word stem completion. Neuroimage 14:182–193
PubMed
CAS
Google Scholar
Papathanassiou D, Etard O, Mellet E, Zago L, Mazoyer B, Tzourio-Mazoyer N (2000) A common language network for comprehension and production: a contribution to the definition of language epicenters with PET. Neuroimage 11:347–357
PubMed
CAS
Google Scholar
Perkel D, Farries M (2000) Complementary ‘bottom-up’ and ‘top-down’ approaches to basal ganglia function. Curr Opin Neurobiol 10:725–731
PubMed
CAS
Google Scholar
Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME (1988) Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature 331:585–589
PubMed
CAS
Google Scholar
Poeppel D (1996) A critical review of PET studies of phonological processing. Brain Lang 55:317–385
PubMed
CAS
Google Scholar
Poole JH, Tyack PL, Stoeger-Horwath AS, Watwood S (2005) Animal behaviour: elephants are capable of vocal learning. Nature 434:455–456
PubMed
CAS
Google Scholar
Price CJ, Wise RJ, Warburton EA, Moore CJ, Howard D, Patterson K, Frackowiak RS, Friston KJ (1996) Hearing and saying. The functional neuro-anatomy of auditory word processing. Brain 119:919–931
PubMed
Google Scholar
Reiner A, Jiao Y, Del Mar N, Laverghetta AV, Lei WL (2003) Differential morphology of pyramidal tract-type and intratelencephalically projecting-type corticostriatal neurons and their intrastriatal terminals in rats. J Comp Neurol 457:420–440
PubMed
Google Scholar
Reiner A, Perkel DJ, Bruce LL et al (2004) Revised nomenclature for avian telencephalon and some related brainstem nuclei. J Comp Neurol 473:377–414
PubMed
Google Scholar
Rosen HJ, Ojemann JG, Ollinger JM, Petersen SE (2000) Comparison of brain activation during word retrieval done silently and aloud using fMRI. Brain Cogn 42:201–217
PubMed
CAS
Google Scholar
Rubens AB (1975) Aphasia with infarction in the territory of the anterior cerebral artery. Cortex 11:239–250
PubMed
CAS
Google Scholar
Sanvito S, Galimberti F, Miller EH (2007) Observational evidences of vocal learning in southern elephant seals: a longitudinal study. Ethology 113:137–146
Google Scholar
Scharff C, Nottebohm F (1991) A comparative study of the behavioral deficits following lesions of various parts of the zebra finch song system: implications for vocal learning. J Neurosci 11:2896–2913
PubMed
CAS
Google Scholar
Seller T (1981) Midbrain vocalization centers in birds. Trends Neurosci 12:301–303
Google Scholar
Simpson HB, Vicario DS (1990) Brain pathways for learned and unlearned vocalizations differ in zebra finches. J Neurosci 10:1541–1556
PubMed
CAS
Google Scholar
Smeets WJ, Gonzalez A (1994) Sensorimotor integration in the brain of reptiles. Eur J Morphol 32:299–302
PubMed
CAS
Google Scholar
Sohrabji F, Nordeen EJ, Nordeen KW (1990) Selective impairment of song learning following lesions of a forebrain nucleus in the juvenile zebra finch. Behav Neural Biol 53:51–63
PubMed
CAS
Google Scholar
Speedie LJ, Wertman E, Ta’ir J, Heilman KM (1993) Disruption of automatic speech following a right basal ganglia lesion. Neurology 43:1768–1774
PubMed
CAS
Google Scholar
Striedter GF (1994) The vocal control pathways in budgerigars differ from those in songbirds. J Comp Neurol 343:35–56
PubMed
CAS
Google Scholar
Strub RL (1989) Frontal lobe syndrome in a patient with bilateral globus pallidus lesions. Arch Neurol 46:1024–1027
PubMed
CAS
Google Scholar
Valenstein E (1975) Nonlanguage disorders of speech reflect complex neurologic apparatus. Geriatrics 30:117–121
PubMed
CAS
Google Scholar
Vates GE, Broome BM, Mello CV, Nottebohm F (1996) Auditory pathways of caudal telencephalon and their relation to the song system of adult male zebra finches. J Comp Neurol 366:613–642
PubMed
CAS
Google Scholar
Vates GE, Vicario DS, Nottebohm F (1997) Reafferent thalamo- “cortical” loops in the song system of oscine songbirds. J Comp Neurol 380:275–290
PubMed
CAS
Google Scholar
Vu ET, Schmidt MF, Mazurek ME (1998) Interhemispheric coordination of premotor neural activity during singing in adult zebra finches. J Neurosci 18:9088–9098
PubMed
CAS
Google Scholar
Wada K, Howard JT, McConnell P et al (2006) A molecular neuroethological approach for identifying and characterizing a cascade of behaviorally regulated genes. Proc Natl Acad Sci USA 103:15212–15217
PubMed
CAS
Google Scholar
Wallesch CW, Henriksen L, Kornhuber HH, Paulson OB (1985) Observations on regional cerebral blood flow in cortical and subcortical structures during language production in normal man. Brain Lang 25:224–233
PubMed
CAS
Google Scholar
Webster DB, Popper AN, Fay RR (1992) The mammalian auditory pathway. Neuroanatomy
Wild JM (1994) Visual and somatosensory inputs to the avian song system via nucleus uvaeformis (Uva) and a comparison with the projections of a similar thalamic nucleus in a nonsongbird, Columba livia. J Comp Neurol 349:512–535
PubMed
CAS
Google Scholar
Wild JM (1997) Neural pathways for the control of birdsong production. J Neurobiol 33:653–670
PubMed
CAS
Google Scholar
Wild JM, Li D, Eagleton C (1997) Projections of the dorsomedial nucleus of the intercollicular complex (DM) in relation to respiratory-vocal nuclei in the brainstem of pigeon (Columba livia) and zebra finch (Taeniopygia guttata). J Comp Neurol 377:392–413
PubMed
CAS
Google Scholar
Wildgruber D, Ackermann H, Grodd W (2001) Differential contributions of motor cortex, basal ganglia, and cerebellum to speech motor control: effects of syllable repetition rate evaluated by fMRI. Neuroimage 13:101–109
PubMed
CAS
Google Scholar
Wise RJ, Greene J, Buchel C, Scott SK (1999) Brain regions involved in articulation. Lancet 353:1057–1061
PubMed
CAS
Google Scholar
Yu AC, Margoliash D (1996) Temporal hierarchical control of singing in birds. Science 273:1871–1875
PubMed
CAS
Google Scholar
Zhang SP, Bandler R, Davis PJ (1995) Brain stem integration of vocalization: role of the nucleus retroambigualis. J Neurophysiol 74:2500–2512
PubMed
CAS
Google Scholar