Journal of Ornithology

, Volume 148, Supplement 2, pp 269–274 | Cite as

Phylogeography of the European capercaillie (Tetrao urogallus) and its implications for conservation

Original Article

Abstract

The phylogeographic pattern of mitochondrial DNA variation in capercaillie (Tetrao urogallus) from 14 populations across the European range was examined using sequence variation in the central portion of the control region and the cytochrome B gene. Twenty-nine different haplotypes were resolved, which formed two distinct phylogenetic clades. The major division separated haplotypes found in the Pyrenees from those found in the rest of Europe. However, two Pyrenean birds were found within the central European clade. The Pyrenean population is likely to be derived from an Iberian glacial refugium, whereas the other European populations have been recolonized from a refugium in the East. Birds from the Eastern refugium spread west until they reached the Pyrenees, where they mixed with birds from the Iberian refugium. Connectivity between populations from central, eastern, and northern Europe and the Pyrenees was interrupted by the extinction of interconnecting populations, leading to the formation of a different subspecies (Tetrao urogallus aquitanicus). We argue that the Pyrenean birds should be therefore regarded as a separate evolutionary significant unit, and we discuss the status of the other capercaillie populations in a conservation context.

Keywords

Tetrao urogallus Capercaillie mtDNA Control region Cytochrome B 

References

  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723CrossRefGoogle Scholar
  2. Castroviejo JB (1975) El urogallo en España. Monografías de la Estación Biológica de Doñana, SevillaGoogle Scholar
  3. Del Hoyo J, Elliott A, Sargatal J (eds) (1994) Handbook of the birds of the world, vol 2. Lynx Ediciones, BarcelonaGoogle Scholar
  4. Duriez O, Sachet JM, Ménoni E, Pidancier N, Miquel C, Taberlet P (2007) Phylogeography of the capercaillie in Eurasia: what is the conservation status in the Pyrenees and Cantabrian Mounts. Conser Genet 8(3):513Google Scholar
  5. Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467CrossRefGoogle Scholar
  6. Hall TA (1999) BioEdit: a user friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  7. Hewitt GM (2004) Genetic consequences of climatic changes in the Quaternaty. Phil Trans R Soc Lon B 359:183–195PubMedCrossRefGoogle Scholar
  8. Klaus S, Andreev AV, Bergmann H-H, Müller F, Porkert J, Wiesner J (1989) Die Auerhühner. Neue Brehm Bücherei. Ziemsen Verlag, WittenbergGoogle Scholar
  9. Kumar S, Tamura K, Nei M (2004) MEGA3: ingegrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163PubMedCrossRefGoogle Scholar
  10. Liukkonen-Anttilla T, Rätti O, Kvist L, Helle P, Orell M (2004) Lack of genetic structuring and subspecies differentiation in the capercaillie (Tetrao urogallus) in Finnland. Ann Zool Fenn 41:619–633Google Scholar
  11. Pakkala T, Pellikka J, Lindén H (2003) Capercaillie Tetrao urogallus—a good candidate for an umbrella species in taiga forests. Wildl Biol 9:309–316Google Scholar
  12. Petit RJ, Aguinagalde I, de Beaulieu JL, Bittkau C, Brewer S, Cheddadi R, et al. (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565PubMedCrossRefGoogle Scholar
  13. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  14. Potapov RL, Flint VE (1989) Handbuch der Vögel der Sowjetunion. Band 4. Galliformes, Gruiformes. Ziemsen Verlag, WittenbergGoogle Scholar
  15. Rodriguez–Munoz R, Mirol PM, Segelbacher G, Fernández A, Tregenza T (2007) Genetic differentiation of an endangered capercaillie (Tetrao urogallus) population at the Southern edge of the species range. Conserv Genet 8(3):659–670Google Scholar
  16. Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497PubMedCrossRefGoogle Scholar
  17. Segelbacher G (2002) Non-invasive genetic analysis in birds: testing reliability. Mol Ecol Notes 2:367–369CrossRefGoogle Scholar
  18. Segelbacher G, Höglund J, Storch I (2003) From isolation to connectivity. Genetic consequences of population fragmentation in capercaillie across Europe. Mol Ecol 12:1773–1780PubMedCrossRefGoogle Scholar
  19. Storch I (2001) Capercaillie. BWP update. J Birds Western Palearctic 3:1–24Google Scholar
  20. Suter W, Graf RF, Hess R (2002) Capercaillie (Tetrao urogallus) and avian biodiversity: testing the umbrella-species concept. Conserv Biol 16:778–788CrossRefGoogle Scholar
  21. Swofford D (1993) PAUP: phylogenetic analysis using parsimony. Illinois Natural History Survey, University of Illinois, Champaign, ILGoogle Scholar
  22. Taberlet P, Fumagalli L, Wustsaucy AG, Cosson JF (1998) Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 7:453–464PubMedCrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2007

Authors and Affiliations

  1. 1.Max-Planck-Institute for Ornithology, Vogelwarte RadolfzellRadolfzellGermany
  2. 2.Department Wildlife Ecology and ManagementUniversity FreiburgFreiburgGermany
  3. 3.School of Biological Science, Zoology Building University of AberdeenAberdeenScotland

Personalised recommendations