Skip to main content
Log in

Field camera input to virtual phantom (ViP) scanner acquisitions for quality assurance of derived MRI quantities: first implementation and proof-of-principle

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Introduction

Quality assurance (QA) of measurements derived from MRI can require complicated test phantoms. This work introduces a new QA concept using gradient and transmit RF recordings by a limited field camera (FC) to govern the previous Virtual Phantom (ViP) method. The purpose is to describe the first technical implementation of combined FC+ViP, and illustrate its performance in examples, including quantitative first-pass myocardial perfusion.

Materials and methods

The new QA concept starts with a synthetic test object (STO) representing some arbitrary test input. Using recordings of the unmodified standard sequence by a gradient and RF waveform camera (FC), ViP calculates by Bloch simulation the continuous RF signal emitted by the STO during this sequence (hence FC+ViP). During nominally identical repetition of the sequence acquisition, ViP transmits the RF signal for scanner reception, reconstruction and any further parametric derivations by the unmodified standard scanner image reconstruction and analysis software.

Results

The scanner outputs were compared against the input STOs.

Conclusion

First proof-of-principle was discussed and supported by correlation between scanner outputs and the input STO. The work makes no claim that its examples are valid QA methods. It concludes by proposing a new industrial standard for QA without the FC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data of all the experiments is available from the first author on reasonable request.

References

  1. Cashmore MT, McCann AJ, Wastling SJ, McGrath C, Thornton J, Hall MG (2021) Clinical quantitative MRI and the need for metrology. Br J Radiol 94:20201215

    Article  PubMed  PubMed Central  Google Scholar 

  2. Keenan KE, Ainslie M, Barker AJ, Boss MA, Cecil KM, Charles C, Chenevert TL, Clarke L, Evelhoch JL, Finn P, Gembris D, Gunter JL, Hill DLG, Jack CR Jr, Jackson EF, Liu G, Russek SE, Sharma SD, Steckner M, Stupic KF, Trzasko JD, Yuan C, Zheng J (2018) Quantitative magnetic resonance imaging phantoms: a review and the need for a system phantom. Magn Res Med 79:48–61

    Article  Google Scholar 

  3. Captur G, Gatehouse P, Keenan KE, Heslinga FG, Bruehl R, Prothmann M, Graves MJ, Eames RJ, Torlasco C, Benedetti G, Donovan J, Ittermann B, Boubertakh R, Bathgate A, Royet C, Pang W, Nezafat R, Salerno M, Kellman P, Moon JC (2016) A medical device-grade T1 and ECV phantom for global T1 mapping quality assurance—the T1 mapping and ECV standardization in cardiovascular magnetic resonance (T1MES) program. JCMR 18:58

    Google Scholar 

  4. Chiribiri A, Schuster A, Ishida M, Hautvast G, Zarinabad N, Morton G, Otton J, Plein S, Breeuwer M, Batchelor P, Schaeffter T, Nagel E (2013) Perfusion phantom: an efficient and reproducible method to simulate myocardial first-pass perfusion measurements with cardiovascular magnetic resonance. Magn Res Med 69:698–707

    Article  CAS  Google Scholar 

  5. Stupic KF, Ainslie M, Boss MA, Charles C, Dienstfrey AM, Evelhoch JL, Finn P, Gimbutas Z, Gunter JL, Hill DLG, Jack CR, Jackson ED, Karaulanov T, Keenan KE, Liu G, Martin MN, Prasad PV, Rentz NS, Yuan C, Russek SE (2021) A standard system phantom for magnetic resonance imaging. Magn Res Med 86:1194–1211

    Article  Google Scholar 

  6. Gadda G, Cocozza S, Gambaccini M, Taibi A, Tedeschi E, Zamboni P, Palma G (2021) NO-HYPE: a novel hydrodynamic phantom for the evaluation of MRI flow measurements. Med and Biol Eng and Comput 59:1889–1899

    Article  Google Scholar 

  7. Swailes NE, MacDonald ME, Frayne R (2011) Dynamic phantom with heart, lung and blood motion for initial validation of MRI techniques. JMRI 34:941–946

    Article  PubMed  Google Scholar 

  8. Saint-Jalmes H, Eliat P, Bezy-Wendling J, Bordelois A, Gambarota G (2014) ViP MRI: virtual phantom magnetic resonance imaging. Magn Reson Mater Phy 27:419–424

    Article  Google Scholar 

  9. Salvati R, Hitti E, Bellanger J-J, Saint-Jalmes H, Gambarota G (2015) Fat ViP MRI: virtual phantom magnetic resonance imaging of water-fat systems. MRI. https://doi.org/10.1016/j.mri.2015.12.002

    Article  Google Scholar 

  10. Saint-Jalmes H, Bordelois A, Gambarota G (2018) Virtual phantom magnetic resonance imaging (ViP MRI) on a clinical MRI platform. Med Phys 45:250–257

    Article  PubMed  Google Scholar 

  11. Barantin L, Le Pape A, Akoka S (1997) A new method for absolute quantitation of MRS metabolites. Magn Reson Med 38:179–182

    Article  CAS  PubMed  Google Scholar 

  12. Dietrich BE, Brunner DO, Wilm BJ, Barmet C, Gross S, Kasper L, Haeberlin M, Schmid T, Vannesjo SJ, Pruessmann KP (2016) A field camera for MR sequence monitoring and system analysis. Magn Res Med 75:1831–1840

    Article  Google Scholar 

  13. Brunner DO, Dietrich BE, Çavuşoğlu M, Wilm BJ, Schmid T, Gross S, Barmet C, Pruessmann KP (2015) Concurrent recording of RF pulses and gradient fields—comprehensive field monitoring for MRI. NMR Biomed 29:1162–1172

    Article  PubMed  Google Scholar 

  14. Pedersen JO, Hanson CG, Xue R, Hanson LG (2018) General purpose electronics for real-time processing and encoding of non-MR data in MR acquisitions. Concepts Magn Reson Part B 48:e21385

    Article  Google Scholar 

  15. Senaj V, Guillot G, Darrasse L (1998) Inductive measurement of magnetic field gradients for magnetic resonance imaging. Rev Sci Instrum 69:2400

    Article  CAS  Google Scholar 

  16. Sipilä PT (2011) Real-time magnetic field monitoring in magnetic resonance imaging. Doktors-Ingenieur (Dr.-Ing.) Thesis, Technischen Universität München

  17. Benoit-Cattin H, Collewet G, Belaroussi B, Saint-Jalmes H, Odet C (2005) The SIMRI project: a versatile and interactive MRI simulator. J Magn Reson 173(1):97–115. https://doi.org/10.1016/j.jmr.2004.09.027

    Article  CAS  PubMed  Google Scholar 

  18. Zur Y, Wood ML, Neuringer LJ (1991) Spoiling of transverse magnetisation in steady-state sequences. Magn Reson Med 21:251–263

    Article  CAS  PubMed  Google Scholar 

  19. Hennig J (1991) Echoes-how to generate, recognize, use or avoid them in MR imaging sequences. Part II: Echoes in imaging sequences. Conc MR. https://doi.org/10.1002/CMR.1820030402

    Article  Google Scholar 

  20. Jerosch-Herold M, Wilke N, Stillman AE (1998) Magnetic resonance quantification of the myocardial perfusion reserve with a Fermi function model for constrained deconvolution. Med Phys 25:73–84

    Article  CAS  PubMed  Google Scholar 

  21. Larsson HBW, Fritz-Hansen T, Rostrup E, Serndergaard L, Ring P, Henriksen O (1996) Myocardial perfusion modeling using MRI. Magn Reson Med 35:716–726

    Article  CAS  PubMed  Google Scholar 

  22. Cernicanu A, Axel L (2006) Theory-based signal calibration with single-point T1 measurements for first-pass quantitative perfusion MRI studies. Acad Radiol 13:686–693

    Article  PubMed  Google Scholar 

  23. Twieg DB, Katz J, Peshock RM (1987) A general treatment of NMR imaging with chemical shift and motion. Magn Res Med 5:32–46

    Article  CAS  Google Scholar 

  24. Wedeen VJ, Wendt RE, Jerosch-Herold M (1989) Motional phase artefacts in Fourier transform MRI. Magn Res Med 11:114–120

    Article  CAS  Google Scholar 

  25. Gatehouse PD (1998) NMR imaging of rapid blood flow. PhD thesis. University of London

  26. Buoso S, Joyce T, Schulthess N, Kozerke S (2023) MRXCAT2.0: synthesis of realistic numerical phantoms by combining left-ventricular shape learning, biophysical simulations and tissue texture generation. J Cardiov Magn Reson 25:25

    Article  Google Scholar 

  27. Weine J, McGrath C, Kozerke S (2023) CMRsim—a Python package for MRI simulations incorporating complex organ motion and flow. ISMRM2023:2393

  28. Kennedy M, Lee Y, Nagy Z (2018) An industrial design solution for integrating NMR magnetic field sensors into an MRI scanner. Magn Reson Med 80:833–839

    Article  PubMed  Google Scholar 

  29. Sung K, Nayak KS (2008) Design and use of tailored hard-pulse trains for uniform saturation of myocardium at 3 Tesla. Magn Reson Med 60:997–1002

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The FC+ViP idea occurred during initial discussion of the myocardial T1 test phantom (T1MES) with the cardiovascular MRI research group of Professor James Moon, then at the National Heart Hospital London.

Author information

Authors and Affiliations

Authors

Contributions

PDG: study conception and design; acquisition of data; analysis and interpretation of data; drafting of manuscript. GC: study conception and design; critical revision. SN-V: critical revision. DJP: critical revision.

Corresponding author

Correspondence to Peter David Gatehouse.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1. Left AIF and Right MYO, 20 frames of the first-pass-perfusion (FPP). The phase-encode shift every 3rd frame arose from a perplexing unexplained small frequency offset variation in Ariel that was reproduced during every perfusion run. (MP4 2630 KB)

Supplementary file 2

. Technical details of the prototype electronics of Ariel. (DOCX 2105 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gatehouse, P.D., Captur, G., Nielles-Vallespin, S. et al. Field camera input to virtual phantom (ViP) scanner acquisitions for quality assurance of derived MRI quantities: first implementation and proof-of-principle. Magn Reson Mater Phy 37, 199–213 (2024). https://doi.org/10.1007/s10334-023-01136-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-023-01136-5

Keywords

Navigation