Skip to main content
Log in

Analysis of coil element distribution and dimension for matrix gradient coils

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

A Correction to this article was published on 01 July 2022

This article has been updated

Abstract

Objective

The goal of this work is to analyze the influence of the distributions and dimensions of the coil elements and to present a method for improving the performance of the matrix gradient coil.

Methods

Three typical models (five structures in total) are presented, and a double-layer biplanar matrix gradient coil is used to install coil elements. Two metrics, namely, the role of coil elements and mutual inductance between coil elements, are proposed to assess the performance of coil systems. An optimization approach to design matrix gradient coils is introduced based on analyzing the distributions and dimensions of coil elements. The flexibility of the magnetic field generation of the designed coil structure is demonstrated by generating full third-order spherical harmonic fields and different oblique gradient fields.

Results

Matrix gradient coils with suitable distributions are capable of generating target magnetic fields. The role of coil elements quantitatively illustrates that the coil elements have different impacts on generating magnetic fields. Increasing the coil element dimension within a certain range can reduce the mutual inductance between coil elements and improve the performance of the coil system. The designed novel double-layer biplanar matrix gradient coil achieves an acceptable performance in generating different magnetic fields.

Conclusions

The proposed metrics can provide theoretical support for designing matrix gradient coils and evaluating their performance. The role of coil elements contributes to analyzing the distributions of coil elements to decrease the number of coil elements and power amplifiers. The mutual inductance between coil elements can be a reference for designing the dimensions of coil elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Change history

References

  1. Wintzheimer S, Driessle T, Ledwig M, Jakob PM, Fidler F (2010) A 50-channel matrix gradient system: a feasibility study. In: Proceedings of the joint annual meeting ISMRM-ESMRMB, Stockholm, Sweden, p 3937

  2. Juchem C, Nixon TW, McIntyre S, Rothman DL, de Graaf RA (2010) Magnetic field modeling with a set of individual localized coils. J Magn Reson 204:281–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Juchem C, Brown PB, Nixon TW, McIntyre S, Rothman DL, de Graaf RA (2011) Multicoil shimming of the mouse brain. Magn Reson Med 66:893–900

    Article  PubMed  PubMed Central  Google Scholar 

  4. Stockmann JP, Wald LL (2018) In vivo B0 field shimming methods for MRI at 7 T. Neuroimage 168:71–87

    Article  PubMed  Google Scholar 

  5. Turner R (1993) Gradient coil design: a review of methods. Magn Reson Imaging 11(7):903–920

    Article  CAS  PubMed  Google Scholar 

  6. Juchem C, Nixon TW, McIntyre S, Boer VO, Rothman DL, de Graaf RA (2011) Dynamic multi-coil shimming of the human brain at 7T. J Magn Reson 212:280–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Juchem C, Herman P, Sanganahalli BG, Brown PB, McIntyre S, Nixon TW, Green D, Hyder F, de Graaf RA (2014) Dynamic multi-coil technique (DYNAMITE) shimming of the rat brain at 11.7 T. NMR Biomed 27:897–906

    Article  PubMed  PubMed Central  Google Scholar 

  8. Juchem C, Nahhass OM, Nixon TW, de Graaf RA (2015) Multi-slice MRI with the dynamic multi-coil technique. NMR Biomed 28:1526–1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Aghaeifar A, Mirkes C, Bause J, Steffen T, Avdievitch N, Henning A, Scheffler K (2018) Dynamic B0 shimming of the human brain at 9.4 T with a 16-channel multi-coil shim setup. Magn Reson Med 80: 1714-1725

  10. Juchem C, Green D, de Graaf RA (2013) Multi-coil magnetic field modelling. J Magn Reson 236:95–104

    Article  CAS  PubMed  Google Scholar 

  11. Lin FH, Witzel T, Schultz G, Gallichan D, Kuo WJ, Wang FN, Hennig J, Zaitsev M, Belliveau JW (2012) Reconstruction of MRI data encoded by multiple non-bijective curvilinear magnetic fields. Magn Reson Med 68:1145–1156

    Article  PubMed  PubMed Central  Google Scholar 

  12. Littin S, Jia F, Zaitsev M (2013) Sinusoidal PatLoc imaging using matrix gradient coils. Proc Intl Soc Mag Reson Med 21:2709

    Google Scholar 

  13. While PT, Korvink JG (2014) Designing MR shim arrays with irregular coil geometry: theoretical considerations. IEEE Trans Biomed Eng 61:1614–1620

    Article  PubMed  Google Scholar 

  14. Jia F, Littin S, Layton KJ, Kroboth S, Yu H, Hennig J, Zaitsev M (2015) Design of a shielded coil element of a matrix gradient coil. Proc Intl Soc Mag Reson Med 23:3091

    Google Scholar 

  15. Jia F, Littin S, Layton KJ, Kroboth S, Yu H, Hennig J, Zaitsev M (2017) Design of a shielded coil element of a matrix gradient coil. J Magn Reson 281:217–228

    Article  CAS  PubMed  Google Scholar 

  16. Littin S, Jia F, Layton KJ, Kroboth S, Yu H, Hennig J, Zaitsev M (2018) Development and implementation of an 84-channel matrix gradient coil. Magn Reson Med 79:1181–1191

    Article  PubMed  Google Scholar 

  17. Kroboth S, Layton KJ, Jia F, Littin S, Yu H, Hennig J, Zaitsev M (2018) Optimization of coil element configurations for a matrix gradient coil. IEEE Trans Med Imaging 37(1):284–292

    Article  PubMed  Google Scholar 

  18. Kroboth S, Layton KJ, Jia F, Littin S, Huijun Yu, Hennig J, Zaitsev M (2019) Switching circuit optimization for matrix gradient coils. Tomography 5(2):248–259

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chen W, Chen J, Sun H, Chen Z (2019) Simulation and analysis of irregular multicoil B0 shimming in C-type permanent magnets using genetic algorithm and simulated annealing. Appl Magn Reson 50(1–3):227–242

    Article  CAS  Google Scholar 

  20. Han H, Song AW, Truong TK (2013) Integrated parallel reception, excitation, and shimming (iPRES). Magn Reson Med 70:241–247

    Article  PubMed  PubMed Central  Google Scholar 

  21. Stockmann JP, Witzel T, Blau J, Polimeni JR, Zhao W, Keil B, Wald LL (2013) Combined shim-RF array for highly efficient shimming of the brain at 7 Tesla. Proceedings of the 21st Annual Meeting of ISMRM; Salt Lake City, Utah, USA, p 665

  22. Stockmann JP, Witzel T, Keil B, Polimeni JR, Mareyam A, LaPierre C, Setsompop K, Wald LL (2016) A 32-channel combined RF and B0 shim array for 3T brain imaging. Magn Reson Med 75(1):441–451. https://doi.org/10.1002/mrm.25587

    Article  PubMed  Google Scholar 

  23. Darnell D, Truong TK, Song AW (2017) Integrated Parallel Reception, Excitation, and Shimming (iPRES) with multiple shim loops per RF coil element for improved B0 shimming. Magn Reson Med 77(5):2077–2086. https://doi.org/10.1002/mrm.26267

    Article  CAS  PubMed  Google Scholar 

  24. Gao Y, Mareyam A, Sun Y, Witzel T, Arango N, Kuang I, White J, Roe AW, Wald L, Stockmann J, Zhang X (2020) A 16-channel AC/DC array coil for anesthetized monkey whole-brain imaging at 7 T. Neuroimage 207:116396

    Article  CAS  PubMed  Google Scholar 

  25. Jia F, Liu Z, Zaitsev M, Hennig J, Korvink JG (2014) Design multiple-layer gradient coils using least-squares finite element method. Struct Multidiscipl Optim 49(3):523–535

    Article  Google Scholar 

  26. Jia F, Schultz G, Testud F, Welz AM, Weber H, Littin S, Yu H, Hennig J, Zaitsev M (2015) Performance evaluation of matrix gradient coils. MAGMA 29:59–73

    Article  PubMed  Google Scholar 

  27. Wang Q, Wei S, Wang Z, Yang W (2019) Design of matrix gradient coils with particle swarm optimization and the genetic algorithm. Chin J Magn Reson 36(4):463–471

    CAS  Google Scholar 

  28. Zivkovic I, Tolstikhin I, Schölkopf B, Scheffler K (2016) B0 matrix shim array design-optimization of the position, geometry and the number of segments of individual coil elements. In 33rd Annual Scientific Meeting of the European Society for Magnetic Resonance. Medicine and Biology, Vienna, Austria, 2016, p 36

  29. Aghaeifar A, Zhou J, Heule R, Tabibian B, Schölkopf B, Jia F, Zaitsev M, Scheffler K (2020) A 32-channel multi-coil setup optimized for human brain shimming at 9.4T. Magn Reson Med 83:749–764

    Article  PubMed  Google Scholar 

  30. Meneses BP, Amadon A (2020) A fieldmap-driven few-channel shim coil design for MRI of the human brain. Phys Med Biol 66(1):015001. https://doi.org/10.1088/1361-6560/abc810

    Article  Google Scholar 

  31. Acero J, Carretero C, Lope I, Alonso R, Lucía O (2013) Analysis of the mutual inductance of planar-lumped inductive power transfer systems. IEEE Trans Ind Electron 60(1):410–420

    Article  Google Scholar 

  32. Raju S, Wu R, Chan M, Yue CP, Member S (2014) Modeling of mutual coupling between planar inductors in wireless power applications. IEEE Trans Power Electron 29(1):481–490

    Article  Google Scholar 

  33. Liu F, Yang Y, Jiang D, Chen X (2017) Modeling and optimization of magnetically coupled resonant wireless power transfer system with varying spatial scales. IEEE Trans Power Electron 32(4):3240–3250

    Article  Google Scholar 

  34. Poole M, Bowtell R (2007) Novel gradient coils designed using a boundary element method. Concepts Magn Reson Part B (Magn Reson Eng) 31B(3):162–175

    Article  Google Scholar 

  35. Zhang P, Shi Y, Wen W, Wang Y (2018) A spiral, bi-planar gradient coil design for open magnetic resonance imaging. Technol Health Care 26:119–132

    Article  PubMed  Google Scholar 

  36. RamRakhyani AK, Mirabbasi S, Chiao M (2011) Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants. IEEE Trans Biomed Circuits Syst 5(1):48–63

    Article  CAS  PubMed  Google Scholar 

  37. Atluri S, Ghovanloo M (2005) Design of a wideband power-efficient inductive wireless link for implantable biomedical devices using multiple carriers. In: Proceedings of the 2nd international IEEE EMBS Conference on Neural Engineering Arlington. March 16–19, pp 533–537

  38. Juchem C, Bierl BM, Schick F, Logothetis NK, Pfeuffer J (2006) Combined passive and active shimming for in vivo MR spectroscopy at high magnetic fields. J Magn Reson 183:278–289

    Article  CAS  PubMed  Google Scholar 

  39. Barry RL, Vannesjo SJ, By S, Gore JC, Smith SA (2018) Spinal cord MRI at 7T. Neuroimage 168:437–451

    Article  PubMed  Google Scholar 

  40. Wilm BJ, Barmet C, Pavan M, Pruessmann KP (2011) Higher order reconstruction for MRI in the presence of spatiotemporal field perturbations. Magn Reson Med 65:1690–1701

    Article  PubMed  Google Scholar 

  41. Edelman RR, Stark DD, Saini S, Ferrucci JT, Dinsmore RE, Ladd W, Brady TJ (1986) Oblique planes of section in MR imaging. Radiology 159(3):807–810

    Article  CAS  PubMed  Google Scholar 

  42. Slone RM, Buck LL, Fitzsimmons JR (1986) Varying gradient angles and offsets to optimize imaging planes in MR. Radiology 158(2):531–536

    Article  CAS  PubMed  Google Scholar 

  43. Cooley CZ, Stockmann JP, Witzel T, LaPierre C, Mareyam A, Jia F, Zaitsev M, Yang W, Wang Z, Stang P, Scott G, Adalsteinsson E, White JK, Wald LL (2020) Design and implementation of a low-cost, tabletop MRI scanner for education and research prototyping. J Magn Reson 310:106625

    Article  CAS  PubMed  Google Scholar 

  44. Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM (1990) The NMR phased array. Magn Reson Med 16:192–225

    Article  CAS  PubMed  Google Scholar 

  45. Peeren GN (2003) Stream function approach for determining optimal surface currents. J Comput Phys 191(1):305–321

    Article  Google Scholar 

  46. Liu W, Zu D, Tang X, Guo H (2007) Target-field method for MRI biplanar gradient coil design. J Phys D: Appl Phys 40:4418

    Article  CAS  Google Scholar 

  47. Zhang R, Xu J, Fu Y, Li Y, Huang K, Zhang J, Fang J (2011) An optimized target-field method for MRI transverse biplanar gradient coil design. Meas Sci Technol 22:125505

    Article  Google Scholar 

  48. Seunghoon H, Hamamura MJ, Nalcioglu O, Muftuler LT (2010) A PIN diode controlled dual-tuned MRI RF coil and phased array for multi nuclear imaging. Phys Med Biol 55:2589–2600

    Article  Google Scholar 

  49. Wiggins GC, Triantafyllou C, Potthast A, Reykowski A, Nittka M, Wald LL (2006) 32-Channel 3 tesla receive-only phased-array head coil with soccer-ball element geometry. Magn Reson Med 56:216–223

    Article  CAS  PubMed  Google Scholar 

  50. Dietz P, Schmitt F, Hennig J (2011) Gradients in ultra high field (UHF) MRI. Medical Radiology. Springer, Berlin, Heidelberg, pp 27–40

  51. Forbes LK, Brideson MA, Crozier S, While PT (2010) An analytical approach to the design of quiet cylindrical asymmetric gradient coils in MRI. Concepts Magn Reson Part B Magn Reson Eng 31B(4):218–236

    Article  Google Scholar 

  52. Mechefske C, Yao G, Gazdzinski C, Wang F, Rutt B (2004) Vibration analysis and measurement of a gradient coil insert in a 4T MRI. Proc Intl Soc Mag Reson Med 11:1632

    Google Scholar 

  53. Roozen NB, Koevoets AH, den Hamer AJ (2008) Active vibration control of gradient coils to reduce acoustic noise of MRI systems. IEEE/ASME Trans Mechatron 13(3):325–334

    Article  Google Scholar 

  54. Brideson MA, Jackson J, Forbes LK, Crozier S (2008) Computing Lorentz forces generated by gradient coils in an open MRI system. ANZIMA J 49(EMAC2007):C423–C438

    Article  Google Scholar 

  55. Forbes LK, Brideson MA, Crozier S, While PT (2007) Calculating the movement of MRI coils, and minimizing their noise. ANZIAM J 49(EMAC2007):C17–C35

    Article  Google Scholar 

Download references

Acknowledgements

Funding support was provided by the Major Science and Technology Innovation Program of Shandong (No. 2019TSLH0410), the Major Science and Technology Innovation Program of Shandong (No. 2021CXGC010504), and the Scientific Instrument and Equipment Development Project of Chinese Academy of Sciences (No. YJKYYQ20210004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhui Yang.

Ethics declarations

Conflict of interest

All other authors declare that they have no conflicts of interest.

Ethical standards

The manuscript does not contain clinical studies, patient or volunteer data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, H., Wei, S., Wang, H. et al. Analysis of coil element distribution and dimension for matrix gradient coils. Magn Reson Mater Phy 35, 967–980 (2022). https://doi.org/10.1007/s10334-022-01021-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-022-01021-7

Keywords

Navigation