Skip to main content

Advertisement

Log in

Abstract

Multiparametric magnetic resonance imaging (mpMRI) has been adopted as the key tool for detection, localization, characterization, and risk stratification of patients suspected to have prostate cancer. Despite advantages over systematic biopsy, the interpretation of prostate mpMRI has limitations including a steep learning curve, leading to considerable interobserver variation. There is growing interest in clinical translation of quantitative imaging techniques for more objective lesion assessment. However, traditional mapping techniques are slow, precluding their use in the clinic. Magnetic resonance fingerprinting (MRF) is an efficient approach for quantitative maps of multiple tissue properties simultaneously. The T1 and T2 values obtained with MRF have been validated with phantom studies as well as in normal volunteers and patients. Studies have shown that MRF-derived T1 and T2 along with ADC values are all significant independent predictors in the differentiation between normal prostate tissue and prostate cancer, and hold promise in differentiating low and intermediate/high-grade cancers. This review seeks to introduce the basics of the prostate MRF technique, discuss the potential applications of prostate MRF for the characterization of prostate cancer, and describes ongoing areas of research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

reproduced from A. Panda et al., “Targeted Biopsy Validation of Peripheral Zone Prostate Cancer Characterization With Magnetic Resonance Fingerprinting and Diffusion Mapping,” Invest. Radiol., p. 1, 2019, https://doi.org/10.1097/rli.0000000000000569. with permission from Wolters Kluwer Health, Inc

Fig. 5

reproduced from A. Panda et al., “Targeted Biopsy Validation of Peripheral Zone Prostate Cancer Characterization With Magnetic Resonance Fingerprinting and Diffusion Mapping,” Invest. Radiol., p. 1, 2019, https://doi.org/10.1097/rli.0000000000000569. with permission from Wolters Kluwer Health, Inc

Fig. 6

reproduced from A. Panda et al., “MR Fingerprinting and ADC Mapping for Characterization of Lesions in Transition Zone of the Prostate Gland,” Radiology. 2019; 292:685–694, permission pending

Fig. 7

reproduced from A. Panda et al., “MR Fingerprinting and ADC Mapping for Characterization of Lesions in Transition Zone of the Prostate Gland,” Radiology. 2019; 292:685–694, permission pending

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Walker SM, Choyke PL, Turkbey B (2020) What you need to know before reading multiparametric MRI for prostate cancer. AJR Am J Roentgenol 214(6):1211–1219. https://doi.org/10.2214/AJR.19.22751

    Article  PubMed  Google Scholar 

  2. Stabile A et al (2020) Multiparametric MRI for prostate cancer diagnosis: current status and future directions. Nat Rev Urol 17(1):41–61. https://doi.org/10.1038/s41585-019-0212-4

    Article  PubMed  Google Scholar 

  3. Giganti F et al (2019) The evolution of MRI of the prostate: the past, the present, and the future. AJR Am J Roentgenol 213(2):384–396. https://doi.org/10.2214/AJR.18.20796

    Article  PubMed  Google Scholar 

  4. Verma S, Choyke PL, Eberhardt SC et al (2017) The current state of mr imaging–targeted biopsy techniques for detection of prostate cancer. Radiology 285(2):343–356. https://doi.org/10.1148/radiol.2017161684

    Article  PubMed  Google Scholar 

  5. Purysko AS et al (2020) PI-RADS Version 2.1: a critical review, from the AJR special series on radiology reporting and data systems. Am J Roentgenol 216(1):20–32. https://doi.org/10.2214/AJR.20.24495

    Article  Google Scholar 

  6. Rosenkrantz AB, Taneja SS (2014) Radiologist, be aware: ten pitfalls that confound the interpretation of multiparametric prostate MRI. AJR Am J Roentgenol 202(1):109–120. https://doi.org/10.2214/AJR.13.10699

    Article  PubMed  Google Scholar 

  7. Chatterjee A, Watson G, Myint E, Sved P, McEntee M, Bourne R (2015) Changes in epithelium, stroma, and lumen space correlate more strongly with gleason pattern and are stronger predictors of prostate adc changes than cellularity metrics. Radiology 277(3):751–762. https://doi.org/10.1148/radiol.2015142414

    Article  PubMed  Google Scholar 

  8. Dickinson L et al (2011) Magnetic resonance imaging for the detection, localisation, and characterisation of prostate cancer: recommendations from a European consensus meeting. Eur Urol 59(4):477–494. https://doi.org/10.1016/j.eururo.2010.12.009

    Article  PubMed  Google Scholar 

  9. Heye T et al (2013) Reproducibility of dynamic contrast-enhanced MR imaging. Part I. Perfusion characteristics in the female pelvis by using multiple computer-aided diagnosis perfusion analysis solutions. Radiology 266(3):801–811. https://doi.org/10.1148/radiol.12120278

    Article  PubMed  Google Scholar 

  10. Heye T et al (2013) Reproducibility of dynamic contrast-enhanced MR imaging. Part II. Comparison of intra- and interobserver variability with manual region of interest placement versus semiautomatic lesion segmentation and histogram analysis. Radiology 266(3):812–821. https://doi.org/10.1148/radiol.12120255

    Article  PubMed  Google Scholar 

  11. Ma D et al (2013) Magnetic resonance fingerprinting. (1). Nature 495(7440):187–192. https://doi.org/10.1038/nature11971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jiang Y, Ma D, Seiberlich N, Gulani V, Griswold MA (2015) MR fingerprinting using fast imaging with steady state precession (FISP) with spiral readout. Magn Reson Med 74(6):1621–1631. https://doi.org/10.1002/mrm.25559

    Article  CAS  PubMed  Google Scholar 

  13. Yu AC et al (2017) Development of a combined MR fingerprinting and diffusion examination for prostate cancer. Radiology 283(3):729–738. https://doi.org/10.1148/radiol.2017161599

    Article  PubMed  Google Scholar 

  14. Panda A et al (2019) Targeted biopsy validation of peripheral zone prostate cancer characterization with magnetic resonance fingerprinting and diffusion mapping. Invest Radiol. https://doi.org/10.1097/rli.0000000000000569

    Article  PubMed  PubMed Central  Google Scholar 

  15. Panda A et al (2019) MR fingerprinting and ADC mapping for characterization of lesions in transition zone of the prostate gland. Radiology 292:685–694

    Article  Google Scholar 

  16. Lo WC et al. (2018) Multicenter repeatability and reproducibility of MR fingerprinting. In: Proc Intl Soc Mag Reson Med, p 4503

  17. Sushentsev N, Kaggie JD, Slough RA, Carmo B (2021) T Barrett (2021) Reproducibility of magnetic resonance fingerprinting-based T1 mapping of the healthy prostate at 1.5 and 3.0 T: a proof-of-concept study. PLoS ONE 16(1):245970. https://doi.org/10.1371/journal.pone.0245970

    Article  CAS  Google Scholar 

  18. Tang S, Fernandez-Granda C, Lannuzel S, Bernstein B, Lattanzi R, Cloos M, Knoll F, Assländer J (2018) Multicompartment magnetic resonance fingerprinting. Inverse Probl 34(9):094005. https://doi.org/10.1088/1361-6420/aad1c3 (Epub 2018 Jul 24. PMID: 30880863; PMCID: PMC6415771)

    Article  PubMed  PubMed Central  Google Scholar 

  19. Deshmane A, McGivney DF, Ma D, Jiang Y, Badve C, Gulani V, Seiberlich N, Griswold MA (2019) Partial volume mapping using magnetic resonance fingerprinting. NMR Biomed 32(5):e4082. https://doi.org/10.1002/nbm.4082 (Epub 2019 Mar 1. PMID: 30821878)

    Article  PubMed  Google Scholar 

  20. Hermann I, Martínez-Heras E, Rieger B, Schmidt R, Golla AK, Hong JS, Lee WK, Yu-Te W, Nagtegaal M, Solana E, Llufriu S, Gass A, Schad LR, Weingärtner S, Zöllner FG (2021) Accelerated white matter lesion analysis based on simultaneous T1 and T2∗ quantification using magnetic resonance fingerprinting and deep learning. Magn Reson Med 86(1):471–486. https://doi.org/10.1002/mrm.28688 (Epub 2021 Feb 5 PMID: 33547656)

    Article  PubMed  Google Scholar 

  21. Hricak H et al (1987) MR imaging of the prostate gland: normal anatomy. AJR Am J Roentgenol 148(1):51–58. https://doi.org/10.2214/ajr.148.1.51

    Article  CAS  PubMed  Google Scholar 

  22. Barentsz JO et al (2012) ESUR prostate MR guidelines 2012. Eur Radiol 22(4):746–757. https://doi.org/10.1007/s00330-011-2377-y

    Article  PubMed  PubMed Central  Google Scholar 

  23. Weinreb JC et al (2016) PI-RADS prostate imaging—reporting and data system: 2015, Version 2. Eur Urol 69(1):16–40. https://doi.org/10.1016/j.eururo.2015.08.052

    Article  PubMed  Google Scholar 

  24. Wang L, Mazaheri Y, Zhang J, Ishill NM, Kuroiwa K, Hricak H (2008) Assessment of biologic aggressiveness of prostate cancer: correlation of MR signal intensity with Gleason grade after radical prostatectomy. Radiology 246(1):168–176. https://doi.org/10.1148/radiol.2461070057

    Article  PubMed  Google Scholar 

  25. Somford DM, Fütterer JJ, Hambrock T, Barentsz JO (2008) Diffusion and perfusion MR imaging of the prostate. Magn Reson Imaging Clin N Am 16(4):685–695. https://doi.org/10.1016/j.mric.2008.07.002

    Article  PubMed  Google Scholar 

  26. Kim CK, Park BK, Kim B (2010) High-b-value diffusion-weighted imaging at 3 T to detect prostate cancer: comparisons between b values of 1,000 and 2,000 s/mm2. AJR Am J Roentgenol 194(1):W33–W37. https://doi.org/10.2214/AJR.09.3004

    Article  PubMed  Google Scholar 

  27. Hambrock T et al (2011) Relationship between apparent diffusion coefficients at 3.0-T MR imaging and Gleason grade in peripheral zone prostate cancer. Radiology 259(2):453–461. https://doi.org/10.1148/radiol.11091409

    Article  PubMed  Google Scholar 

  28. Wu L-M, Xu J-R, Ye Y-Q, Lu Q, Hu J-N (2012) The clinical value of diffusion-weighted imaging in combination with T2-weighted imaging in diagnosing prostate carcinoma: a systematic review and meta-analysis. AJR Am J Roentgenol 199(1):103–110. https://doi.org/10.2214/AJR.11.7634

    Article  PubMed  Google Scholar 

  29. Il Jung S, Donati OF, Vargas HA, Goldman D, Hricak H, Akin O (2013) Transition zone prostate cancer: incremental value of diffusion-weighted endorectal MR imaging in tumor detection and assessment of aggressiveness. Radiology 269(2):493–503. https://doi.org/10.1148/radiol.13130029

    Article  Google Scholar 

  30. Hara N, Okuizumi M, Koike H, Kawaguchi M, Bilim V (2005) Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a useful modality for the precise detection and staging of early prostate cancer. Prostate 62(2):140–147. https://doi.org/10.1002/pros.20124

    Article  PubMed  Google Scholar 

  31. Heye T, Merkle EM, Reiner CS, Davenport MS, Horvath JJ, Feuerlein S, Breault SR, Gall P, Bashir MR, Dale BM, Kiraly AP, Boll DT (2013) Reproducibility of dynamic contrast-enhanced MR imaging. Part II. Comparison of intra- and interobserver variability with manual region of interestplacement versus semiautomatic lesion segmentation and histogram analysis. Radiology 3:812–821

    Article  Google Scholar 

  32. Lovegrove CE et al (2018) Prostate imaging features that indicate benign or malignant pathology on biopsy. Transl Androl Urol 7(Suppl 4):S420–S435. https://doi.org/10.21037/tau.2018.07.06

    Article  PubMed  PubMed Central  Google Scholar 

  33. Purysko AS, Herts BR (2012) Prostate MRI: the hemorrhage exclusion sign. J Urol 188(5):1946–1947. https://doi.org/10.1016/j.juro.2012.08.058

    Article  PubMed  Google Scholar 

  34. Rosenkrantz AB et al (2016) Interobserver reproducibility of the PI-RADS Version 2 lexicon: a multicenter study of six experienced prostate radiologists. Radiology 280(3):793–804. https://doi.org/10.1148/radiol.2016152542

    Article  PubMed  Google Scholar 

  35. Westphalen AC et al (2020) Variability of the positive predictive value of PI-RADS for prostate MRI across 26 centers: experience of the society of abdominal radiology prostate cancer disease-focused panel. Radiology 296(1):76–84. https://doi.org/10.1148/radiol.2020190646

    Article  PubMed  Google Scholar 

  36. Gaziev G et al (2016) Defining the learning curve for multiparametric magnetic resonance imaging (MRI) of the prostate using MRI-transrectal ultrasonography (TRUS) fusion-guided transperineal prostate biopsies as a validation tool. BJU Int 117(1):80–86. https://doi.org/10.1111/bju.12892

    Article  PubMed  Google Scholar 

  37. Akin O, Riedl CC, Ishill NM, Moskowitz CS, Zhang J, Hricak H (2010) Interactive dedicated training curriculum improves accuracy in the interpretation of MR imaging of prostate cancer. Eur Radiol 20(4):995–1002. https://doi.org/10.1007/s00330-009-1625-x

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lee CH (2019) Quantitative T2-mapping using MRI for detection of prostate malignancy: a systematic review of the literature. Acta Radiol 60(9):1181–1189. https://doi.org/10.1177/0284185118820058 (Epub 2019 Jan 8 PMID: 30621443)

    Article  PubMed  Google Scholar 

  39. Mai J et al (2019) T2 mapping in prostate cancer. Invest Radiol 54(3):146–152. https://doi.org/10.1097/RLI.0000000000000520

    Article  PubMed  Google Scholar 

  40. Jambor I, Pesola M, Merisaari H et al (2016) Relaxation along fictitious field, diffusion-weighted imaging, and T2 mapping of prostate cancer: prediction of cancer aggressiveness. Magn Reson Med 75(5):2130–2140

    Article  CAS  Google Scholar 

  41. Liu W, Turkbey B, Sénégas J, Remmele S, Xu S, Kruecker J, Bernardo M, Wood BJ, Pinto PA, Choyke PL (2011) Accelerated T2 mapping for characterization of prostate cancer. Magn Reson Med 65(5):1400–1406. https://doi.org/10.1002/mrm.22874

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yamauchi FI, Penzkofer T, Fedorov A et al (2015) Prostate cancer discrimination in the peripheral zone with a reduced field-of-view T(2)-mapping MRI sequence. Magn Reson Imaging 33(5):525–530

    Article  Google Scholar 

  43. Bonekamp D, Jacobs MA, El-Khouli R, Stoianovici D, Macura KJ (2011) Advancements in MR imaging of the prostate: from diagnosis to interventions. Radiographics 31(3):677–703. https://doi.org/10.1148/rg.313105139

    Article  PubMed  PubMed Central  Google Scholar 

  44. Boesen L, Chabanova E, Lgager V, Balslev I, Thomsen HS (2015) Apparent diffusion coefficient ratio correlates significantly with prostate cancer Gleason score at final pathology. J Magn Reson Imaging 42(2):446–453

    Article  Google Scholar 

  45. Hoang Dinh A et al (2015) Characterization of prostate cancer using T2 mapping at 3T: a multi-scanner study. Diagn Interv Imaging 96(4):365–372. https://doi.org/10.1016/j.diii.2014.11.016

    Article  CAS  PubMed  Google Scholar 

  46. Boesen L, Chabanova E, Løgager V, Balslev I, Thomsen HS (2015) Apparent diffusion coefficient ratio correlates significantly with prostate cancer gleason score at final pathology. J Magn Reson Imaging 42(2):446–453. https://doi.org/10.1002/jmri.24801

    Article  PubMed  Google Scholar 

  47. Kim CK, Park BK, Han JJ, Kang TW, Lee HM (2007) Diffusion-weighted imaging of the prostate at 3 T for differentiation of malignant and benign tissue in transition and peripheral zones: preliminary results. J Comput Assist Tomogr 31(3):449–454. https://doi.org/10.1097/01.rct.0000243456.00437.59

    Article  PubMed  Google Scholar 

  48. Gibbs P, Liney GP, Pickles MD, Zelhof B, Rodrigues G, Turnbull LW (2009) Correlation of ADC and T2 measurements with cell density in prostate cancer at 3.0 Tesla. Invest Radiol 44(9):572–576. https://doi.org/10.1097/RLI.0b013e3181b4c10e

    Article  PubMed  Google Scholar 

  49. Nagel KNA et al (2013) Differentiation of prostatitis and prostate cancer by using diffusion-weighted MR imaging and MR-guided biopsy at 3 T. Radiology 267(1):164–172. https://doi.org/10.1148/radiol.12111683

    Article  PubMed  Google Scholar 

  50. Simpkin CJ, Morgan VA, Giles SL, Riches SF, Parker C, Souza NM (2013) Relationship between T2 relaxation and apparent diffusion coefficient in malignant and non-malignant prostate regions and the effect of peripheral zone fractional volume. Br J Radiol 86(1024):20120469. https://doi.org/10.1259/bjr.20120469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chatterjee A, Devaraj A, Mathew M, Szasz T, Antic T, Karczmar GS, Oto A (2019) Performance of T2 maps in the detection of prostate cancer. Acad Radiol 26(1):15–21. https://doi.org/10.1016/j.acra.2018.04.005

    Article  PubMed  Google Scholar 

  52. Baur ADJ et al (2020) Evaluation of T1 relaxation time in prostate cancer and benign prostate tissue using a Modified Look-Locker inversion recovery sequence. Sci Rep 10(1):3121. https://doi.org/10.1038/s41598-020-59942-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cui Y, Han S, Liu M, Wu PY, Zhang W, Zhang J, Li C, Chen M (2020) Diagnosis and grading of prostate cancer by relaxation maps from synthetic MRI. J Magn Reson Imaging 52(2):552–564. https://doi.org/10.1002/jmri.27075 (Epub 2020 Feb 6 PMID: 32027071)

    Article  PubMed  Google Scholar 

  54. Fedorov A, Penzkofer T, Hirsch MS et al (2015) The role of pathology correlation approach in prostate cancer index lesion detection and quantitative analysis with multiparametric MRI. Acad Radiol 22(5):548–555

    Article  Google Scholar 

  55. Sabouri S, Chang SD, Savdie R, Zhang J, Jones EC, Goldenberg SL, Black PC, Kozlowski P (2017) Luminal water imaging: a new MR imaging T2 mapping technique for prostate cancer diagnosis. Radiology 284(2):451–459. https://doi.org/10.1148/radiol.2017161687

    Article  PubMed  Google Scholar 

  56. Chatterjee A, He D, Fan X, Antic T, Jiang Y, Eggener S, Karczmar GS, Oto A (2019) Diagnosis of prostate cancer by use of MRI-derived quantitative risk maps: a feasibility study. AJR Am J Roentgenol 213(2):W66–W75. https://doi.org/10.2214/AJR.18.20702 (Epub 2019 Apr 30 PMID: 31039019)

    Article  PubMed  Google Scholar 

  57. Badve C et al (2015) Simultaneous T(1) and T(2) brain relaxometry in asymptomatic volunteers using magnetic resonance fingerprinting. Tomogr Ann Arbor Mich 1(2):136–144. https://doi.org/10.18383/j.tom.2015.00166

    Article  Google Scholar 

  58. Badve C et al (2016) Magnetic resonance fingerprinting of adult brain tumors: initial experience. AJNR Am Neuroradiol 51(1):87–100. https://doi.org/10.1037/a0038432.Latino

    Article  Google Scholar 

  59. Chen Y et al (2016) MR fingerprinting for rapid quantitative abdominal imaging. Radiology 279(1):278–286. https://doi.org/10.1148/radiol.2016152037

    Article  PubMed  Google Scholar 

  60. Hamilton JI et al (2017) MR fingerprinting for rapid quantification of myocardial T1, T2, and proton spin density. Magn Reson Med 77(4):C1. https://doi.org/10.1002/mrm.26668

    Article  Google Scholar 

  61. Chen Y et al (2019) Three-dimensional MR fingerprinting for quantitative breast imaging. Radiology 290(1):33–40. https://doi.org/10.1148/radiol.2018180836

    Article  PubMed  Google Scholar 

  62. Panda A, Chen Y, Ropella-Panagis K, Ghodasara S, Stopchinski M, Seyfried N, Wright K, Seiberlich N, Griswold M, Gulani V (2019) Repeatability and reproducibility of 3D MR fingerprinting relaxometry measurements in normal breast tissue. J Magn Reson Imaging 50(4):1133–1143. https://doi.org/10.1002/jmri.26717 (Epub 2019 Mar 20. PMID: 30892807; PMCID: PMC6750981)

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hamilton JI, Jiang Y, Ma D, Lo WC, Gulani V, Griswold M, Seiberlich N (2018) Investigating and reducing the effects of confounding factors for robust T1 and T2 mapping with cardiac MR fingerprinting. Magn Reson Imaging 30(53):40–51

    Article  Google Scholar 

  64. Kara D, Fan M, Hamilton J, Griswold M, Seiberlich N, Brown R (2019) Parameter map error due to normal noise and aliasing artifacts in MR fingerprinting. Magn Reson Med 81(5):3108–3123. https://doi.org/10.1002/mrm.27638 (Epub 2019 Jan 23. PMID: 30671999; PMCID: PMC6414267)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lahiri A, Fessler JA, Hernandez-Garcia L (2020) Optimizing MRF-ASL scan design for precise quantification of brain hemodynamics using neural network regression. Magn Reson Med 83(6):1979–1991. https://doi.org/10.1002/mrm.28051 (Epub 2019 Nov 21 PMID: 31751497)

    Article  PubMed  Google Scholar 

  66. Jordan SP, Hu S, Rozada I, McGivney DF, Boyacioğlu R, Jacob DC, Huang S, Beverland M, Katzgraber HG, Troyer M, Griswold MA, Ma D (2021) Automated design of pulse sequences for magnetic resonance fingerprinting using physics-inspired optimization. Proc Natl Acad Sci USA 118(40):e2020516118. https://doi.org/10.1073/pnas.2020516118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fang Z, Chen Y, Liu M, Xiang L, Zhang Q, Wang Q, Lin W, Shen D (2019) Deep learning for fast and spatially constrained tissue quantification from highly accelerated data in magnetic resonance fingerprinting. IEEE Trans Med Imaging 38(10):2364–2374. https://doi.org/10.1109/TMI.2019.2899328(Epub2019Feb13.PMID:30762540;PMCID:PMC6692257)

    Article  PubMed  PubMed Central  Google Scholar 

  68. Cohen O, Rosen MS (2017) Algorithm comparison for schedule optimization in MR fingerprinting. Magn Reson Imaging 41:15–21. https://doi.org/10.1016/j.mri.2017.02.010 (Epub 2017 Feb 24 PMID: 28238942)

    Article  PubMed  Google Scholar 

  69. Fessler JA (2007) On NUFFT-based gridding for non-Cartesian MRI. J Magn Reson 188:191–195

    Article  CAS  Google Scholar 

  70. Cao X, Liao C, Wang Z, Chen Y, Ye H, He H, Zhong J (2017) Robust sliding-window reconstruction for Accelerating the acquisition of MR fingerprinting. Magn Reson Med 78(4):1579–1588. https://doi.org/10.1002/mrm.26521 (Epub 2016 Nov 7 PMID: 27851871)

    Article  CAS  PubMed  Google Scholar 

  71. Liao C et al (2017) 3D MR fingerprinting with accelerated stack-of-spirals and hybrid sliding-window and GRAPPA reconstruction. Neuroimage 162:13–22. https://doi.org/10.1016/j.neuroimage.2017.08.030

    Article  PubMed  Google Scholar 

  72. Pierre EY, Ma D, Chen Y, Badve C, Griswold MA (2016) Multiscale reconstruction for MR fingerprinting. Magn Reson Med 75(6):2481–2492. https://doi.org/10.1002/mrm.25776

    Article  PubMed  Google Scholar 

  73. Mazor G, Weizman L, Tal A, Eldar YC (2018) Low-rank magnetic resonance fingerprinting. Med Phys. https://doi.org/10.1002/mp.13078

    Article  PubMed  Google Scholar 

  74. Koolstra K, Beenakker JM, Koken P, Webb A, Börnert P (2019) Cartesian MR fingerprinting in the eye at 7T using compressed sensing and matrix completion-based reconstructions. Magn Reson Med 81(4):2551–2565. https://doi.org/10.1002/mrm.27594

    Article  PubMed  Google Scholar 

  75. Assländer J, Cloos MA, Knoll F, Sodickson DK, Hennig J, Lattanzi R (2018) Low rank alternating direction method of multipliers reconstruction for MR fingerprinting. Magn Reson Med 79(1):83–96

    Article  Google Scholar 

  76. Zhao B, Setsompop K, Adalsteinsson E, Gagoski B, Ye H, Ma D, Jiang Y, Ellen Grant P, Griswold MA, Wald LL (2018) Improved magnetic resonance fingerprinting reconstruction with low-rank and subspace modeling. Magn Reson Med 79(2):933–942

    Article  Google Scholar 

  77. Lima da Cruz G, Bustin A, Jaubert O, Schneider T, Botnar RM, Prieto C (2019) Sparsity and locally low rank regularization for MR fingerprinting. Magn Reson Med 81(6):3530–3543. https://doi.org/10.1002/mrm.27665

    Article  PubMed  PubMed Central  Google Scholar 

  78. Walsh DO, Gmitro AF, Marcellin MW (2000) Adaptive reconstruction of phased array MR imagery. Magn Reson Med 43:682–690

    Article  CAS  Google Scholar 

  79. Huang F, Vijayakumar S, Li Y, Hertel S, Duensing GR (2008) A software channel compression technique for faster reconstruction with many channels. Magn Reson Imaging 26(1):133–141. https://doi.org/10.1016/j.mri.2007.04.010 (Epub 2007 Jun 15 PMID: 17573223)

    Article  PubMed  Google Scholar 

  80. Yang M, Ma D, Jiang Y, Hamilton J, Seiberlich N, Griswold MA, McGivney D (2018) Low rank approximation methods for MR fingerprinting with large scale dictionaries. Magn Reson Med 79(4):2392–2400. https://doi.org/10.1002/mrm.26867 (Epub 2017 Aug 13. PMID: 28804918; PMCID: PMC5811391)

    Article  PubMed  Google Scholar 

  81. Wang D, Ostenson J, Smith DS (2020) snapMRF: GPU-accelerated magnetic resonance fingerprinting dictionary generation and matching using extended phase graphs. Magn Reson Imaging 66:248–256. https://doi.org/10.1016/j.mri.2019.11.015 (Epub 2019 Nov 15. PMID: 31740194; PMCID: PMC7031031)

    Article  PubMed  Google Scholar 

  82. Ostenson J, Smith DS, Does MD, Damon BM (2020) Slice-selective extended phase graphs in gradient-crushed, transient-state free precession sequences: an application to MR fingerprinting. Magn Reson Med 84(6):3409–3422. https://doi.org/10.1002/mrm.28381 (Epub 2020 Jul 22. PMID: 32697869; PMCID: PMC8485742)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hamilton JI, Seiberlich N (2020) Machine learning for rapid magnetic resonance fingerprinting tissue property quantification. Proc IEEE Inst Electr Electron Eng 108(1):69–85

    Article  Google Scholar 

  84. Cauley SF, Setsompop K, Ma D, Jiang Y, Ye H, Adalsteinsson E, Griswold MA, Wald LL (2015) Fast group matching for MR fingerprinting reconstruction. Magn Reson Med 74(2):523–528. https://doi.org/10.1002/mrm.25439 (Epub 2014 Aug 28. PMID: 25168690; PMCID: PMC4700821)

    Article  PubMed  Google Scholar 

  85. Hoppe E, Körzdörfer G, Würfl T, Wetzl J, Lugauer F, Pfeuffer J, Maier A (2017) Deep learning for magnetic resonance fingerprinting: a new approach for predicting quantitative parameter values from time series. Stud Health Technol Inform 243:202–206

    PubMed  Google Scholar 

  86. Cohen O, Zhu B, Rosen MS (2018) MR fingerprinting Deep RecOnstruction NEtwork (DRONE). Magn Reson Med 80(3):885–894

    Article  Google Scholar 

  87. Song P, Eldar YC, Mazor G, Rodrigues MRD (2019) HYDRA: Hybrid deep magnetic resonance fingerprinting. Med Phys 46(11):4951–4969. https://doi.org/10.1002/mp.13727 (Epub 2019 Sep 10 PMID: 31329307)

    Article  PubMed  Google Scholar 

  88. Chen Y, Fang Z, Hung SC, Chang WT, Shen D, Lin W (2020) High-resolution 3D MR Fingerprinting using parallel imaging and deep learning. Neuroimage 206:116329. https://doi.org/10.1016/j.neuroimage.2019.116329 (Epub 2019 Nov 2. PMID: 31689536; PMCID: PMC7136033)

    Article  PubMed  Google Scholar 

  89. Liu H, van der Heide O, van den Berg CAT, Sbrizzi A (2021) Fast and accurate modeling of transient-state, gradient-spoiled sequences by recurrent neural networks. NMR Biomed 34(7):e4527. https://doi.org/10.1002/nbm.4527 (Epub 2021 May 5. PMID: 33949718; PMCID: PMC8244023)

    Article  PubMed  PubMed Central  Google Scholar 

  90. Cao P, Cui D, Vardhanabhuti V, Hui ES (2020) Development of fast deep learning quantification for magnetic resonance fingerprinting in vivo. Magn Reson Imaging 70:81–90. https://doi.org/10.1016/j.mri.2020.03.009 (Epub 2020 Apr 7 PMID: 32276007)

    Article  PubMed  Google Scholar 

  91. Kim B, Schär M, Park H, Heo HY (2020) A deep learning approach for magnetization transfer contrast MR fingerprinting and chemical exchange saturation transfer imaging. Neuroimage 221:117165. https://doi.org/10.1016/j.neuroimage.2020.117165

    Article  CAS  PubMed  Google Scholar 

  92. Sushentsev N et al (2020) The effect of gadolinium-based contrast agent administration on magnetic resonance fingerprinting-based T(1) relaxometry in patients with prostate cancer. Sci Rep 10(1):20475. https://doi.org/10.1038/s41598-020-77331-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lee YS, Choi MH, Lee YJ, Han D, Kim D (2021) Magnetic resonance fingerprinting in prostate cancer before and after contrast enhancement. Br J Radiol 94:20210479

    Article  Google Scholar 

  94. Shiradkar R, Panda A, Leo P, Janowczyk A, Farre X, Janaki N, Li L, Pahwa S, Mahran A, Buzzy C, Fu P, Elliott R, MacLennan G, Ponsky L, Gulani V, Madabhushi A (2021) T1 and T2 MR fingerprinting measurements of prostate cancer and prostatitis correlate with deep learning-derived estimates of epithelium, lumen, and stromal composition on corresponding whole mount histopathology. Eur Radiol 31(3):1336–1346. https://doi.org/10.1007/s00330-020-07214-9 (Epub 2020 Sep 2. Erratum in: Eur Radiol. 2020 Sep 18;: PMID: 32876839; PMCID: PMC7882016)

    Article  PubMed  Google Scholar 

  95. Han D, Choi MH, Lee YJ, Kim DH (2021) Feasibility of novel three-dimensional magnetic resonance fingerprinting of the prostate gland: phantom and clinical studies. Korean J Radiol. https://doi.org/10.3348/kjr.2020.1362 (Epub ahead of print. PMID: 34047506)

    Article  PubMed  PubMed Central  Google Scholar 

  96. Wright KL, Jiang Y, Ma D, Noll DC, Griswold MA, Gulani V, Hernandez-Garcia L (2018) Estimation of perfusion properties with MR Fingerprinting Arterial Spin Labeling. Magn Reson Imaging 50:68–77. https://doi.org/10.1016/j.mri.2018.03.011

    Article  PubMed  PubMed Central  Google Scholar 

  97. Su P, Fan H, Liu P, Li Y, Qiao Y, Hua J, Lin D, Jiang D, Pillai JJ, Hillis AE, Lu H (2020) MR fingerprinting ASL: sequence characterization and comparison with dynamic susceptibility contrast (DSC) MRI. NMR Biomed 33(1):e4202. https://doi.org/10.1002/nbm.4202 (Epub 2019 Nov 4. PMID: 31682305; PMCID: PMC7229700.)

    Article  PubMed  Google Scholar 

  98. Cencini M, Biagi L, Kaggie JD, Schulte RF, Tosetti M, Buonincontri G (2019) Magnetic resonance fingerprinting with dictionary-based fat and water separation (DBFW MRF): a multi-component approach. Magn Reson Med 81(5):3032–3045. https://doi.org/10.1002/mrm.27628 (Epub 2018 Dec 21. PMID: 30578569; PMCID: PMC6590362)

    Article  PubMed  Google Scholar 

  99. Ostenson J, Damon BM, Welch EB (2019) MR fingerprinting with simultaneous T1, T2, and fat signal fraction estimation with integrated B0 correction reduces bias in water T1 and T2 estimates. Magn Reson Imaging 60:7–19. https://doi.org/10.1016/j.mri.2019.03.017 (Epub 2019 Mar 23. PMID: 30910696; PMCID: PMC6581466.)

    Article  PubMed  PubMed Central  Google Scholar 

  100. Marty B, Carlier PG (2020) MR fingerprinting for water T1 and fat fraction quantification in fat infiltrated skeletal muscles. Magn Reson Med 83(2):621–634. https://doi.org/10.1002/mrm.27960 (Epub 2019 Sep 10 PMID: 31502715)

    Article  CAS  PubMed  Google Scholar 

  101. Jaubert O, Arrieta C, Cruz G, Bustin A, Schneider T, Georgiopoulos G, Masci PG, Sing-Long C, Botnar RM, Prieto C (2020) Multi-parametric liver tissue characterization using MR fingerprinting: simultaneous T1, T2, T2 *, and fat fraction mapping. Magn Reson Med 84(5):2625–2635. https://doi.org/10.1002/mrm.28311 (Epub 2020 May 13 PMID: 32406125)

    Article  CAS  PubMed  Google Scholar 

  102. Jiang Y, Hamilton JI, Lo W-C, Wright KL, Ma D, Coristine AJ, Seiberlich N, Gulani V, Griswold MA (2017) Simultaneous T1, T2 and diffusion quantification using multiple contrast prepared magnetic resonance fingerprinting. Proc Intl Soc Mag Res Med 1171

  103. Zhang Y, Wells SA, Hernando D (2019) Stimulated echo based mapping (STEM) of T 1, T 2, and apparent diffusion coefficient: validation and protocol optimization. Magn Reson Med 81(1):167–181. https://doi.org/10.1002/mrm.27358

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Siemens Healthineers, National Science Foundation/Chemical, Bioengineering, Environmental and Transport Systems 1553441, National Institutes of Health/ National Cancer Institute R01CA208236, National Institutes of Health/National Cancer Institute R37CA263583

Funding

This study was funded by Siemens Healthineers, National Science Foundation/Chemical, Bioengineering, Environmental and Transport Systems (Grant number 1553441), National Institutes of Health (Grant numbers R01CA208236, R37CA263583, F30CA23935, T32GM007250).

Author information

Authors and Affiliations

Authors

Contributions

W-CL: Data collection and analysis, Literature review, Drafting of manuscript, Critical revision. AP: Drafting of manuscript, Critical revision. YJ: Drafting of manuscript, Critical revision. JA: Literature review, Drafting of manuscript, Critical revision. VG: Literature review, Drafting of manuscript, Critical revision. NS: Literature review, Drafting of manuscript, Critical revision.

Corresponding author

Correspondence to Nicole Seiberlich.

Ethics declarations

Conflict of interest

Authors Lo, Panda, Jiang, Ahad, Gulani, and Seiberlich have received research grants from Siemens Healthineers, and authors Jiang, Gulani, and Seiberlich have received royalties from Siemens Healthineers for MRF. Author Lo is currently an employee of Siemens Healthineers.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lo, WC., Panda, A., Jiang, Y. et al. MR fingerprinting of the prostate. Magn Reson Mater Phy 35, 557–571 (2022). https://doi.org/10.1007/s10334-022-01012-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-022-01012-8

Keywords

Navigation