Skip to main content

Advertisement

Log in

An in vivo implementation of the MEX MRI for myelin fraction of mice brain

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

Magnetization EXchange (MEX) sequence measures a signal linearly dependent on the myelin proton fraction by selective suppression of water magnetization and a recovery period. Varying the recovery period enables extraction of the percentile fraction of myelin bound protons. We aim to demonstrate the MEX sequence sensitivity to the fraction of protons associated with myelin in mice brain, in vivo.

Methods

The cuprizone mouse model was used to manipulate the myelin content. Mice fed cuprizone (n = 15) and normal chow (n = 8) were imaged in vivo using MEX sequence. MR images were segmented into corpus callosum and internal capsule (white matter) and cortical gray matter, and fitted to the recovery equation. Results were analyzed with correlation to MWF and histopathology.

Results

The extracted parameters show significant differences in the corpus callosum between the cuprizone and control groups. The cuprizone group exhibited reduced myelin fraction 26.5% (P < 0.01). The gray matter values were less affected, with 13.5% reduction (P < 0.05); no changes were detected in the internal capsule. Results were validated by MWF scans and good correlation to the histology analysis (R2 = 0.685).

Conclusion

The results of this first in vivo implementation of the MEX sequence provide a quantitative measure of demyelination in brain white matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

MT:

Magnetization transfer

UTE:

Ultra-short TE

MWF:

Myelin water fraction

MEX:

Magnetization exchange

GM:

Gray matter

WM:

White matter

SIR:

Selective inversion recovery

MS:

Multiple sclerosis

EAE:

Experimental autoimmune encephalitis

ROI:

Region of interest

CC:

Corpus callosum

sCC:

Splenium corpus callosum

cGM:

Cortical gray matter

IC:

Internal capsule

FLASH:

Fast low angle shot

MSME:

Multi-slice-multi-echo

RARE:

Rapid acquisition with relaxation enhancement

MBP:

Myelin basic protein

References

  1. Mehta RC, Pike GB, Enzmann DR (1996) Magnetization transfer magnetic resonance imaging: a clinical review. Top Magn Reson Imaging 8(4):214–230

    Article  CAS  Google Scholar 

  2. van Zijl PCM, Lam WW, Xu J, Knutsson L, Stanisz GJ (2018) Magnetization transfer contrast and chemical exchange saturation transfer MRI. Features and analysis of the field-dependent saturation spectrum. Neuroimage 168:222–241. https://doi.org/10.1016/j.neuroimage.2017.04.045

    Article  PubMed  Google Scholar 

  3. McKeithan LJ, Lyttle BD, Box BA et al (2019) 7T quantitative magnetization transfer (qMT) of cortical gray matter in multiple sclerosis correlates with cognitive impairment. Neuroimage 203:116190. https://doi.org/10.1016/j.neuroimage.2019.116190

    Article  PubMed  Google Scholar 

  4. Dortch RD, Li K, Gochberg DF et al (2011) Quantitative magnetization transfer imaging in human brain at 3 T via selective inversion recovery. Magn Reson Med 66(5):1346–1352. https://doi.org/10.1002/mrm.22928

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gochberg DF, Kennan RP, Gore JC (1997) Quantitative studies of magnetization transfer by selective excitation and T1 recovery. Magn Reson Med 38(2):224–231. https://doi.org/10.1002/mrm.1910380210

    Article  CAS  PubMed  Google Scholar 

  6. Dortch RD, Bagnato F, Gochberg DF, Gore JC, Smith SA (2018) Optimization of selective inversion recovery magnetization transfer imaging for macromolecular content mapping in the human brain. Magn Reson Med 80(5):1824–1835. https://doi.org/10.1002/mrm.27174

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wilhelm MJ, Ong HH, Wehrli SL et al (2012) Direct magnetic resonance detection of myelin and prospects for quantitative imaging of myelin density. Proc Natl Acad Sci USA 109(24):9605–9610. https://doi.org/10.1073/pnas.1115107109

    Article  PubMed  PubMed Central  Google Scholar 

  8. Du J, Ma G, Li S et al (2014) Ultrashort echo time (UTE) magnetic resonance imaging of the short T2 components in white matter of the brain using a clinical 3T scanner. Neuroimage 87:32–41. https://doi.org/10.1016/j.neuroimage.2013.10.053

    Article  PubMed  Google Scholar 

  9. Campbell JSW, Leppert IR, Narayanan S et al (2018) Promise and pitfalls of g-ratio estimation with MRI. Neuroimage 182:80–96. https://doi.org/10.1016/j.neuroimage.2017.08.038

    Article  PubMed  Google Scholar 

  10. Stikov N, Campbell JSW, Stroh T et al (2015) In vivo histology of the myelin g-ratio with magnetic resonance imaging. Neuroimage 118:397–405. https://doi.org/10.1016/j.neuroimage.2015.05.023

    Article  PubMed  Google Scholar 

  11. Laule C, Vavasour IM, Kolind SH et al (2007) Magnetic resonance imaging of myelin. Neurotherapeutics 4(3):460–484. https://doi.org/10.1016/j.nurt.2007.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Laule C, Moore GRW (2018) Myelin water imaging to detect demyelination and remyelination and its validation in pathology. Brain Pathol 28(5):750–764. https://doi.org/10.1111/bpa.12645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Alonso-Ortiz E, Levesque IR, Pike GB (2015) MRI-based myelin water imaging: a technical review. Magn Reson Med 73(1):70–81. https://doi.org/10.1002/mrm.25198

    Article  CAS  PubMed  Google Scholar 

  14. Leandrou S, Petroudi S, Kyriacou PA, Reyes-Aldasoro CC, Pattichis CS (2018) Quantitative MRI Brain studies in mild cognitive impairment and Alzheimer’s disease: a methodological review. IEEE Rev Biomed Eng 11:97–111. https://doi.org/10.1109/RBME.2018.2796598

    Article  PubMed  Google Scholar 

  15. Ben-Eliezer N, Sodickson DK, Block KT (2015) Rapid and accurate T2 mapping from multi-spin-echo data using Bloch-simulation-based reconstruction. Magn Reson Med 73(2):809–817. https://doi.org/10.1002/mrm.25156

    Article  PubMed  Google Scholar 

  16. Eliav U, Navon G (2017) The role of magnetization transfer in the observed contrast in T1weighted imaging under clinical setups. NMR Biomed 30(12):e3792. https://doi.org/10.1002/nbm.3792

    Article  CAS  Google Scholar 

  17. Edzes HT, Samulski ET (1978) The measurement of cross-relaxation effects in the proton NMR spin-lattice relaxation of water in biological systems: hydrated collagen and muscle. J Magn Reson 31(2):207–229. https://doi.org/10.1016/0022-2364(78)90185-3

    Article  CAS  Google Scholar 

  18. Morrison C, Mark HR (1995) A model for magnetization transfer in tissues. Magn Reson Med 33(4):475–482. https://doi.org/10.1002/mrm.1910330404

    Article  CAS  PubMed  Google Scholar 

  19. Callaghan PT (1991) Principles of nuclear magnetic resonance microscopy. Med Phys. https://doi.org/10.1118/1.596918

    Article  Google Scholar 

  20. Bydder GM, Hajnal JV, Young IR (1998) MRI: Use of the inversion recovery pulse sequence. Clin Radiol 53(3):159–176. https://doi.org/10.1016/S0009-9260(98)80096-2

    Article  CAS  PubMed  Google Scholar 

  21. Gochberg DF, Gore JC (2007) Quantitative magnetization transfer imaging via selective inversion recovery with short repetition times. Magn Reson Med 57(2):437–441. https://doi.org/10.1002/mrm.21143

    Article  PubMed  PubMed Central  Google Scholar 

  22. Torkildsen A, Brunborg LA, Myhr KM, Bø L (2008) The cuprizone model for demyelination. Acta Neurol Scand 117(SUPPL 188):72–76. https://doi.org/10.1111/j.1600-0404.2008.01036.x

    Article  Google Scholar 

  23. Matsushima GK, Morell P (2006) The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol 11(1):107–116. https://doi.org/10.1111/j.1750-3639.2001.tb00385.x

    Article  PubMed Central  Google Scholar 

  24. Teklad Custom Diets (2016) Research models and services teklad custom diets cuprizone diets: a trusted tool for neuroscience research https://www.mendeley.com/catalogue/f2ef99c6-

  25. Ding S, Guo Y, Chen X et al (2021) Demyelination and remyelination detected in an alternative cuprizone mouse model of multiple sclerosis with 7.0 T multiparameter magnetic resonance imaging. Sci Rep 11(1):1–11. https://doi.org/10.1038/s41598-021-90597-6

    Article  CAS  Google Scholar 

  26. Mullin AP, Cui C, Wang Y et al (2017) rHIgM22 enhances remyelination in the brain of the cuprizone mouse model of demyelination. Neurobiol Dis 105:142–155. https://doi.org/10.1016/J.NBD.2017.05.015

    Article  CAS  PubMed  Google Scholar 

  27. Steelman AJ, Thompson JP, Li J (2012) Demyelination and remyelination in anatomically distinct regions of the corpus callosum following cuprizone intoxication. Neurosci Res 72(1):32–42. https://doi.org/10.1016/J.NEURES.2011.10.002

    Article  CAS  PubMed  Google Scholar 

  28. Wang Z, Baharani A, Wei Z et al (2021) Low field magnetic stimulation promotes myelin repair and cognitive recovery in chronic cuprizone mouse model. Clin Exp Pharmacol Physiol 48(8):1090–1102. https://doi.org/10.1111/1440-1681.13490

    Article  CAS  PubMed  Google Scholar 

  29. Saskia Hübner N, Mechling AE, Lee HL et al (2017) The connectomics of brain demyelination: Functional and structural patterns in the cuprizone mouse model. Neuroimage 146:1–18. https://doi.org/10.1016/J.NEUROIMAGE.2016.11.008

    Article  Google Scholar 

  30. Eliav U, Ronen I, Halock K, Kim DSNGM (2007) Magnetization exchange (MEX) MRI: a clinically viable protein-based imaging method. ISMRM-ESMRMB meeting. Springer, Berlin

    Google Scholar 

  31. Stanisz GJ, Kecojevic A, Bronskill MJ, Henkelman RM (1999) Characterizing white matter with magnetization transfer and T2. Magn Reson Med 42(6):1128–1136. https://doi.org/10.1002/(SICI)1522-2594(199912)42:6%3c1128::AID-MRM18%3e3.0.CO;2-9

    Article  CAS  PubMed  Google Scholar 

  32. Leibfritz D, Dreher W (2001) Magnetization transfer MRS. NMR Biomed 14(2):65–76. https://doi.org/10.1002/nbm.681

    Article  CAS  PubMed  Google Scholar 

  33. Smith SA, Edden RAE, Farrell JAD, Barker PB, Van Zijl PCM (2008) Measurement of T 1 and T 2 in the cervical spinal cord at 3 tesla. Magn Reson Med 60(1):213–219. https://doi.org/10.1002/mrm.21596

    Article  PubMed  PubMed Central  Google Scholar 

  34. van Gelderen P, Jiang X, Duyn JH (2016) Effects of magnetization transfer on T1 contrast in human brain white matter. Neuroimage 128:85–95. https://doi.org/10.1016/j.neuroimage.2015.12.032

    Article  PubMed  Google Scholar 

  35. Fatouros PP, Marmarou A (1999) Use of magnetic resonance imaging for in vivo measurements of water content in human brain: method and normal values. J Neurosurg 90(1):109–115. https://doi.org/10.3171/jns.1999.90.1.0109

    Article  CAS  PubMed  Google Scholar 

  36. Edzes H, Nature ES (1977) Cross relaxation and spin diffusion in the proton NMR of hydrated collagen. Springer, Berlin. https://doi.org/10.1038/265521a0

    Book  Google Scholar 

  37. Eliav U, Navon G (2002) Multiple quantum filtered NMR studies of the interaction between collagen and water in the tendon. J Am Chem Soc 124(12):3125–3132

    Article  CAS  Google Scholar 

  38. Dula AN, Gochberg DF, Valentine HL, Valentine WM, Does MD (2010) Multiexponential T2, magnetization transfer, and quantitative histology in white matter tracts of rat spinal cord. Magn Reson Med 63(4):902–909. https://doi.org/10.1002/mrm.22267

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hiremath MM, Saito Y, Knapp GW, Ting JP-Y, Suzuki K, Matsushima GK (1998) Microglial/macrophage accumulation during cuprizone-induced demyelination in C57BL/6 mice. J Neuroimmunol 92(1–2):38–49. https://doi.org/10.1016/S0165-5728(98)00168-4

    Article  CAS  PubMed  Google Scholar 

  40. Dorr AE, Lerch JP, Spring S, Kabani N, Henkelman RM (2008) High resolution three-dimensional brain atlas using an average magnetic resonance image of 40 adult C57Bl/6J mice. Neuroimage 42(1):60–69. https://doi.org/10.1016/j.neuroimage.2008.03.037

    Article  CAS  PubMed  Google Scholar 

  41. Bjarnason TA, Mitchell JR (2010) AnalyzeNNLS: magnetic resonance multiexponential decay image analysis. J Magn Reson 206(2):200–204. https://doi.org/10.1016/j.jmr.2010.07.008

    Article  CAS  PubMed  Google Scholar 

  42. Hibbits N, Yoshino J, Le TQ, Armstrong RC (2012) Astrogliosis during acute and chronic cuprizone demyelination and implications for remyelination. ASN Neuro 4(6):AN20120062. https://doi.org/10.1042/AN20120062

    Article  CAS  Google Scholar 

  43. Turati L, Moscatelli M, Mastropietro A et al (2015) In vivo quantitative magnetization transfer imaging correlates with histology during de- and remyelination in cuprizone-treated mice. NMR Biomed 28(3):327–337. https://doi.org/10.1002/nbm.3253

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is dedicated to the memory of our beloved colleague and NMR mentor, Dr. Uzi Eliav. Dr. Eliav’s role over the years in developing multiple NMR methods, including the MEX method, and his role in this particular work were pivotal. His friendship and wisdom will be missed.

Funding

This study was facilitated by funding from the Israeli Science Foundation (ISF grant no. 1585/17) granted to U.N. and from the U.S.‐Israel Binational Science Foundation (BSF grant no. 2013253) to G.N. and U.E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uri Nevo.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. (approval # M-01-17-095).

Ethical statement

The research was carried out in accordance with the ethics declaration at the animal care unit of the Faculty of Medicine, Tel Aviv University (approval # M-01-17-095).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Uzi Eliav: Died December 19th, 2019.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 56 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilczynski, E., Sasson, E., Eliav, U. et al. An in vivo implementation of the MEX MRI for myelin fraction of mice brain. Magn Reson Mater Phy 35, 267–276 (2022). https://doi.org/10.1007/s10334-021-00950-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-021-00950-z

Keywords

Navigation