Skip to main content
Log in

Analysis of three-chamber view conventional and tagged cine MRI in patients with suspected hypertrophic cardiomyopathy

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objectives

To investigate the potential value of adding a tagged three-chamber (3Ch) cine to clinical hypertrophic cardiomyopathy (HCM) magnetic resonance imaging (MRI) protocols, including to help distinguish HCM patients with regionally impaired cardiac function.

Methods

Forty-eight HCM patients, five patients with “septal knuckle” (SK), and 20 healthy volunteers underwent MRI at 1.5T; a tagged 3Ch cine was added to the protocol. Regional strain, myocardial wall thickness, and mitral valve leaflet lengths were measured in the 3Ch view.

Results

In HCM, we found a reduced tangential strain with decreased diastolic relaxation in both hypertrophied (p = 0.003) and remote segments (p = 0.035). Strain in the basal septum correlated with the length of the coaptation zone + residual leaflet (r = 0.48, p < 0.001). In the basal free wall, patients with SK had faster relaxation compared to HCM patients with septal hypertrophy.

Discussion

The 3Ch tagged MRI sequence provides useful information for the examination of suspected HCM patients, with minimal additional time cost. Local wall function is closely associated with morphological changes of the mitral apparatus measured in the same plane and may provide insights into mechanisms of obstruction. The additional strain information may be helpful when analyzing local myocardial wall motion patterns in the presence of SK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

3Ch:

Three-chamber view

AML:

Anterior mitral leaflet

CMR:

Cardiovascular magnetic resonance imaging

CZ:

Coaptation zone

ED:

End-diastole

EF:

Ejection fraction

ES:

End-systole

HCM:

Hypertrophic cardiomyopathy

LA:

Left atrium

LV:

Left ventricle

LVOT:

Left ventricular outflow tract

MRI:

Magnetic resonance imaging

MV:

Mitral valve

P1:

Greatest principal strain

P2:

Least principal strain

PML:

Posterior mitral leaflet

RL:

Residual leaflet

SAM:

Systolic anterior motion

SD:

Standard deviation

SK:

Septal knuckle

References

  1. Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS, et al. (2011) ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy. Circulation 2011:CIR. 0b013e318223e2bd

  2. Maron BJ, Epstein SE, Roberts WC (1983) Hypertrophic cardiomyopathy: a common cause of sudden death in the young competitive athlete. Eur Heart J 4(suppl_F):135–144

    Article  PubMed  Google Scholar 

  3. Maron BJ (2002) Hypertrophic cardiomyopathy: a systematic review. JAMA 287(10):1308–1320

    Article  PubMed  Google Scholar 

  4. Maron MS, Olivotto I, Zenovich AG, Link MS, Pandian NG, Kuvin JT, Nistri S, Cecchi F, Udelson JE, Maron BJ (2006) Hypertrophic cardiomyopathy is predominantly a disease of left ventricular outflow tract obstruction. Circulation 114(21):2232–2239

    Article  PubMed  Google Scholar 

  5. Maron MS, Olivotto I, Betocchi S, Casey SA, Lesser JR, Losi MA et al (2003) Effect of left ventricular outflow tract obstruction on clinical outcome in hypertrophic cardiomyopathy. N Engl J Med 348(4):295–303

    Article  PubMed  Google Scholar 

  6. Sherrid MV, Pearle G, Gunsburg DZ (1998) Mechanism of benefit of negative inotropes in obstructive hypertrophic cardiomyopathy. Circulation 97(1):41–47

    Article  CAS  PubMed  Google Scholar 

  7. Green EM, Wakimoto H, Anderson RL, Evanchik MJ, Gorham JM, Harrison BC, Henze M, Kawas R, Oslob JD, Rodriguez HM, Song Y (2016) A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice. Science 351(6273):617–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sherrid MV, Balaram S, Kim B, Axel L, Swistel DG (2016) The mitral valve in obstructive hypertrophic cardiomyopathy: a test in context. J Am Coll Cardiol 67(15):1846–1858

    Article  PubMed  Google Scholar 

  9. Ro R, Halpern D, Sahn DJ, Homel P, Arabadjian M, Lopresto C et al (2014) Vector flow mapping in obstructive hypertrophic cardiomyopathy to assess the relationship of early systolic left ventricular flow and the mitral valve. J Am Coll Cardiol 64(19):1984–1995

    Article  PubMed  Google Scholar 

  10. Klues HG, Maron BJ, Dollar AL, Roberts WC (1992) Diversity of structural mitral valve alterations in hypertrophic cardiomyopathy. Circulation 85(5):1651–1660

    Article  CAS  PubMed  Google Scholar 

  11. Sherrid MV, Chu C, Delia E, Mograder A, Dwyer EM (1993) An echocardiographic study of the fluid machanics of obstruction in hypertrophic cardiomyopathy. J Am Coll Cardiol 22(3):816–825

    Article  CAS  PubMed  Google Scholar 

  12. Sherrid MV, Gunsburg DZ, Moldenhauer S, Pearle G (2000) Systolic anterior motion begins at low left ventricular outflow tract velocity in obstructive hypertrophic cardiomyopathy. J Am Coll Cardiol 36(4):1344–1354

    Article  CAS  PubMed  Google Scholar 

  13. Cape EG, Simons D, Jimoh A, Weyman AE, Yoganathan AP, Levine RA (1989) Chordal geometry determines the shape and extent of systolic anterior mitral motion—invitro studies. J Am Coll Cardiol 13(6):1438–1448

    Article  CAS  PubMed  Google Scholar 

  14. Kelshiker MA, Mayet J, Unsworth B, Okonko DO (2013) Basal septal hypertrophy. Current cardiology reviews 9(4):325–330

    Article  PubMed  Google Scholar 

  15. O’Hanlon R, Grasso A, Roughton M, Moon JC, Clark S, Wage R et al (2010) Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J Am Coll Cardiol 56(11):867–874

    Article  PubMed  Google Scholar 

  16. Bruder O, Wagner A, Jensen CJ, Schneider S, Ong P, Kispert E-M et al (2010) Myocardial scar visualized by cardiovascular magnetic resonance imaging predicts major adverse events in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 56(11):875–887

    Article  PubMed  Google Scholar 

  17. Axel L, Dougherty L (1989) MR imaging of motion with spatial modulation of magnetization. Radiology 171(3):841–845

    Article  CAS  PubMed  Google Scholar 

  18. Aletras AH, Ding S, Balaban RS, Wen H (1999) DENSE: displacement encoding with stimulated echoes in cardiac functional MRI. J Magn Reson 137(1):247–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pelc LR, Sayre J, Yun K, Castro LJ, Herfkens RJ, Miller DC et al (1994) Evaluation of myocardial motion tracking with cine-phase contrast magnetic resonance imaging. Invest Radiol 29(12):1038–1042

    Article  CAS  PubMed  Google Scholar 

  20. Chitiboi T, Axel L (2017) Magnetic resonance imaging of myocardial strain: a review of current approaches. J Magn Reson Imaging 46(5):1263–1280

    Article  PubMed  Google Scholar 

  21. Petitjean C, Rougon N, Cluzel P (2005) Assessment of myocardial function: a review of quantification methods and results using tagged MRI. J Cardiovasc Magn Reson 7(2):501–516

    Article  PubMed  Google Scholar 

  22. Urheim S, Edvardsen T, Torp H, Angelsen B, Smiseth OA (2000) Myocardial strain by Doppler echocardiography validation of a new method to quantify regional myocardial function. Circulation 102(10):1158–1164

    Article  CAS  PubMed  Google Scholar 

  23. Amundsen BH, Helle-Valle T, Edvardsen T, Torp H, Crosby J, Lyseggen E et al (2006) Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol 47(4):789–793

    Article  PubMed  Google Scholar 

  24. Smiseth OA, Torp H, Opdahl A, Haugaa KH, Urheim S (2015) Myocardial strain imaging: how useful is it in clinical decision making? Europ Heart J 37(15):1196–1207

    Article  Google Scholar 

  25. Aletras AH, Tilak GS, Hsu L-Y, Arai AE (2011) Heterogeneity of intramural function in hypertrophic cardiomyopathy mechanistic insights from MRI late gadolinium enhancement and high-resolution displacement encoding with stimulated echoes strain maps. Circ Cardiovasc Imaging 4(4):425–434

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gwathmey JK, Warren SE, Briggs GM, Copelas L, Feldman MD, Phillips PJ et al (1991) Diastolic dysfunction in hypertrophic cardiomyopathy. Effect on active force generation during systole. J Clin Investig 87(3):1023–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maron BJ, Spirito P, Green KJ, Wesley YE, Bonow RO, Arce J (1987) Noninvasive assessment of left ventricular diastolic function by pulsed Doppler echocardiography in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 10(4):733–742

    Article  CAS  PubMed  Google Scholar 

  28. Ho CY, Sweitzer NK, McDonough B, Maron BJ, Casey SA, Seidman J et al (2002) Assessment of diastolic function with Doppler tissue imaging to predict genotype in preclinical hypertrophic cardiomyopathy. Circulation 105(25):2992–2997

    Article  PubMed  Google Scholar 

  29. Young AA, Kramer CM, Ferrari VA, Axel L, Reichek N (1994) Three-dimensional left ventricular deformation in hypertrophic cardiomyopathy. Circulation 90(2):854–867

    Article  CAS  PubMed  Google Scholar 

  30. Hor KN, Gottliebson WM, Carson C, Wash E, Cnota J, Fleck R et al (2010) Comparison of magnetic resonance feature tracking for strain calculation with harmonic phase imaging analysis. JACC Cardiovasc Imaging 3(2):144–151

    Article  PubMed  Google Scholar 

  31. Axel L, Dougherty L (1989) Heart wall motion: improved method of spatial modulation of magnetization for MR imaging. Radiology 172(2):349–350

    Article  CAS  PubMed  Google Scholar 

  32. Lubliner J (2008) Plasticity theory. Courier Corporation

  33. Knutsson H, Andersson M (eds) (2005) Morphons: Segmentation using elastic canvas and paint on priors. In: IEEE International Conference on Image Processing, ICIP 2005, IEEE

  34. Tautz L, Hennemuth A, Peitgen H-O (eds) (2011) Motion analysis with quadrature filter based registration of tagged MRI sequences. In: International Workshop on Statistical Atlases and Computational Models of the Heart, Springer

  35. Chitiboi T, Hennemuth A, Schnell S, Chowdhary V, Honarmand A, Markl M et al (2016) Contour tracking and probabilistic segmentation of tissue phase mapping MRI. SPIE Med Imaging Int Soc Optics Photonics 9784:978404

    Google Scholar 

  36. Kawel N, Turkbey EB, Carr JJ, Eng J, Gomes AS, Hundley WG, Johnson C, Masri SC, Prince MR, van der Geest RJ, Lima JA (2012) Normal left ventricular myocardial thickness for middle-aged and older subjects with steady-state free precession cardiac magnetic resonance: the multi-ethnic study of atherosclerosis. Circulation 5(4):500–508

    PubMed  Google Scholar 

  37. Maron MS, Olivotto I, Harrigan C, Appelbaum E, Gibson CM, Lesser JR et al (2011) Mitral valve abnormalities identified by cardiovascular magnetic resonance represent a primary phenotypic expression of hypertrophic cardiomyopathyclinical perspective. Circulation 124(1):40–47

    Article  CAS  PubMed  Google Scholar 

  38. Moore CC, Lugo-Olivieri CH, McVeigh ER, Zerhouni EA (2000) Three-dimensional systolic strain patterns in the normal human left ventricle: characterization with tagged mr imaging 1. Radiology 214(2):453–466

    Article  CAS  PubMed  Google Scholar 

  39. Davies M, McKenna W (1995) Hypertrophic cardiomyopathy—pathology and pathogenesis. Histopathology 26(6):493–500

    Article  CAS  PubMed  Google Scholar 

  40. Zimmer G, Zimmermann R, Hess OM, Schneider J, Kübler W, Krayenbuehl HP et al (1992) Decreased concentration of myofibrils and myofiber hypertrophy are structural determinants of impaired left ventricular function in patients with chronic heart diseases: a multiple logistic regression analysis. J Am Coll Cardiol 20(5):1135–1142

    Article  CAS  PubMed  Google Scholar 

  41. Dawson DK, Maceira AM, Raj VJ, Graham C, Pennell DJ, Kilner PJ (2010) Regional thicknesses and thickening of compacted and trabeculated myocardial layers of the normal left ventricle studied by cardiovascular magnetic resonance. Circ Cardiovasc Imaging 4(2):139–146

    Article  PubMed  PubMed Central  Google Scholar 

  42. Palka P, Lange A, Fleming AD, Donnelly JE, Dutka DP, Starkey IR et al (1997) Differences in myocardial velocity gradient measured throughout the cardiac cycle in patients with hypertrophic cardiomyopathy, athletes and patients with left ventricular hypertrophy due to hypertension. J Am Coll Cardiol 30(3):760–768

    Article  CAS  PubMed  Google Scholar 

  43. Noureldin RA, Liu S, Nacif MS, Judge DP, Halushka MK, Abraham TP et al (2012) The diagnosis of hypertrophic cardiomyopathy by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 14(1):17

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ho CY, Day SM, Colan SD, Russell MW, Towbin JA, Sherrid MV et al (2017) The burden of early phenotypes and the influence of wall thickness in hypertrophic cardiomyopathy mutation carriers: findings from the HCMNet study. JAMA Cardiol 2(4):419–428

    Article  PubMed  PubMed Central  Google Scholar 

  45. Halpern DG, Swistel DG, Po JR, Joshi R, Winson G, Arabadjian M et al (2015) Echocardiography before and after resect-plicate-release surgical myectomy for obstructive hypertrophic cardiomyopathy. J Am Soc Echocardiogr 28(11):1318–1328

    Article  PubMed  Google Scholar 

  46. Balaram SK, Ross RE, Sherrid MV, Schwartz GS, Hillel Z, Winson G et al (2012) Role of mitral valve plication in the surgical management of hypertrophic cardiomyopathy. Ann Thorac Surg 94(6):1990–1998

    Article  PubMed  Google Scholar 

  47. Nampiaparampil RG, Swistel DG, Schlame M, Saric M, Sherrid MV (2018) Intraoperative two-and three-dimensional transesophageal echocardiography in combined myectomy-mitral operations for hypertrophic cardiomyopathy. J Am Soc Echocardiogr 31(3):275–288

    Article  PubMed  Google Scholar 

Download references

Funding

This work was partially funded by NIH (NIH R21-EB109595 and R01 HL127661).

Author information

Authors and Affiliations

Authors

Contributions

TC developed the analysis pipeline, performed the data analysis, interpreted the data and wrote the manuscript. MK participated in and drafting of the manuscript and results interpretation. LA designed the study, interpreted the data and edited the manuscript. DH and MS performed the clinical analysis and interpreted the data. LT and AH wrote the motion estimation algorithm and contributed to the analysis algorithms. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Teodora Chitiboi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All subjects were retrospectively studied under a research protocol approved by the local Institutional Review Board (IRB).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chitiboi, T., Kanski, M., Tautz, L. et al. Analysis of three-chamber view conventional and tagged cine MRI in patients with suspected hypertrophic cardiomyopathy. Magn Reson Mater Phy 33, 613–626 (2020). https://doi.org/10.1007/s10334-020-00836-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-020-00836-6

Keywords

Navigation