Abstract
Kidney transplantation has developed into a widespread procedure to treat end stage renal failure, with transplantation results improving over the years. Postoperative complications have decreased over the past decades, but are still an important cause of morbidity and mortality. Early accurate diagnosis and treatment is the key to prevent renal allograft impairment or even graft loss. Ideally, a diagnostic tool should be able to detect post-transplant renal dysfunction, differentiate between the different causes and monitor renal function during and after therapeutic interventions. Non-invasive imaging modalities for diagnostic purposes show promising results. Magnetic resonance imaging (MRI) techniques have a number of advantages, such as the lack of ionizing radiation and the possibility to obtain relevant tissue information without contrast, reducing the risk of contrast-induced nephrotoxicity. However, most techniques still lack the specificity to distinguish different types of parenchymal diseases. Despite some promising outcomes, MRI is still barely used in the post-transplantation diagnostic process. The aim of this review is to survey the current literature on the relevance and clinical applicability of diagnostic MRI modalities for the detection of various types of complications after kidney transplantation.
Similar content being viewed by others
References
ERA-EDTA Registry: ERA-EDTA Registry Annual Report 2017 (2019) Amsterdam UMC, location AMC, Department of Medical Informatics, Amsterdam, The Netherlands
United States Renal Data System (2018) 2018 USRDS annual data report: epidemiology of kidney disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda
Gondos A et al (2013) Kidney graft survival in Europe and the United States: strikingly different long-term outcomes. Transplantation 95(2):267–274
Moers C et al (2009) Machine perfusion or cold storage in deceased-donor kidney transplantation. N Engl J Med 360(1):7–19
Mehrotra A et al (2012) Incidence and consequences of acute kidney injury in kidney transplant recipients. Am J Kidney Dis 59(4):558–565
Fang J et al (2019) Complications and clinical management of ultrasound-guided renal allograft biopsies. Transl Androl Urol 8(4):292–296
Redfield RR et al (2016) Nature, timing, and severity of complications from ultrasound-guided percutaneous renal transplant biopsy. Transpl Int 29(2):167–172
Preda A et al (2003) Complication rate and diagnostic yield of 515 consecutive ultrasound-guided biopsies of renal allografts and native kidneys using a 14-gauge Biopty gun. Eur Radiol 13(3):527–530
Mahoney MC et al (1993) Safety and efficacy of kidney transplant biopsy: Tru-Cut needle vs sonographically guided Biopty gun. AJR Am J Roentgenol 160(2):325–326
Solez K, Racusen LC (2013) The Banff classification revisited. Kidney Int 83(2):201–206
Hariharan S et al (2000) Improved graft survival after renal transplantation in the United States, 1988 to 1996. N Engl J Med 342(9):605–612
Matas AJ et al (1994) The impact of an acute rejection episode on long-term renal allograft survival (t1/2). Transplantation 57(6):857–859
Wu O et al (2009) Acute rejection and chronic nephropathy: a systematic review of the literature. Transplantation 87(9):1330–1339
Jalalzadeh M et al (2015) The impact of acute rejection in kidney transplantation on long-term allograft and patient outcome. Nephrourol Mon 7(1):e24439
Jani A et al (2002) Determinants of hypofiltration during acute renal allograft rejection. J Am Soc Nephrol 13(3):773–778
Khalifa F et al (2013) A comprehensive non-invasive framework for automated evaluation of acute renal transplant rejection using DCE-MRI. NMR Biomed 26:1460–1470
Yamamoto A et al (2011) Quantitative evaluation of acute renal transplant dysfunction with low-dose three-dimensional MR renography. Radiology 260:781–789
Cornell LD, Smith RN, Colvin RB (2008) Kidney transplantation: mechanisms of rejection and acceptance. Annu Rev Pathol 3:189–220
Cicciarelli J et al (1993) Effects of cold ischemia time on cadaver renal allografts. Transpl Proc 25(1 Pt 2):1543–1546
Franco A et al (1992) Prevention measures for severe acute tubular necrosis in cadaveric kidney transplants. Transpl Proc 24(1):48–49
Thadhani R, Pascual M, Bonventre JV (1996) Acute renal failure. N Engl J Med 334(22):1448–1460
Thoeny HC et al (2005) Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experience. Radiology 235(3):911–917
Zheng Z et al (2014) Renal water molecular diffusion characteristics in healthy native kidneys: assessment with diffusion tensor MR imaging. PLoS ONE 9(12):e113469
Hollis E et al (2017) Statistical analysis of ADCs and clinical biomarkers in detecting acute renal transplant rejection. Br J Radiol 90:20170125
Kaul A et al (2014) Assessment of allograft function using diffusion-weighted magnetic resonance imaging in kidney transplant patients. Saudi J Kidney Dis Transpl 25(6):1143–1147
Abou-El-Ghar ME et al (2012) Role of diffusion-weighted MRI in diagnosis of acute renal allograft dysfunction: a prospective preliminary study. Br J Radiol 85:e206–e211
Eisenberger U et al (2010) Evaluation of renal allograft function early after transplantation with diffusion-weighted MR imaging. Eur Radiol 20:1374–1383
Rheinheimer S et al (2012) IVIM-DWI of transplanted kidneys: reduced diffusion and perfusion dependent on cold ischemia time. Eur J Radiol 81:e951–e956
Hueper K et al (2016) Multiparametric functional MRI: non-invasive imaging of inflammation and edema formation after kidney transplantation in mice. PLoS ONE 11(9):e0162705
Hueper K et al (2016) Diffusion-weighted imaging and diffusion tensor imaging detect delayed graft function and correlate with allograft fibrosis in patients early after kidney transplantation. J Magn Reson Imaging JMRI 44:112–121
Friedli I et al (2016) New magnetic resonance imaging index for renal fibrosis assessment: a comparison between diffusion-weighted imaging and T1 mapping with histological validation. Sci Rep 6:30088
Li LP, Halter S, Prasad PV (2008) Blood oxygen level-dependent MR imaging of the kidneys. Magn Reson Imaging Clin N Am 16(4):613–625
Park SY et al (2014) Assessment of early renal allograft dysfunction with blood oxygenation level-dependent MRI and diffusion-weighted imaging. Eur J Radiol 83:2114–2121
Xiao W et al (2012) Functional evaluation of transplanted kidneys in normal function and acute rejection using BOLD MR imaging. Eur J Radiol 81:838–845
Han F et al (2008) The significance of BOLD MRI in differentiation between renal transplant rejection and acute tubular necrosis. Nephrol Dial Transpl Off Publ Eur Dial Transpl Assoc Eur Renal Assoc 23:2666–2672
Sadowski EA et al (2010) Blood oxygen level-dependent and perfusion magnetic resonance imaging: detecting differences in oxygen bioavailability and blood flow in transplanted kidneys. Magn Reson Imaging 28:56–64
Liu G et al (2014) Detection of renal allograft rejection using blood oxygen level-dependent and diffusion weighted magnetic resonance imaging: a retrospective study. BMC Nephrol 15:158
Djamali A et al (2006) Noninvasive assessment of early kidney allograft dysfunction by blood oxygen level-dependent magnetic resonance imaging. Transplantation 82:621–628
Wentland AL et al (2009) Quantitative MR measures of intrarenal perfusion in the assessment of transplanted kidneys: initial experience. Acad Radiol 16:1077–1085
Preidler KW et al (1996) Differentiation of delayed kidney graft function with gadolinium-DTPA-enhanced magnetic resonance imaging and Doppler ultrasound. Invest Radiol 31:364–371
Pereira RS et al (2010) Assessment of chronic renal allograft nephropathy using contrast-enhanced MRI: a pilot study. AJR Am J Roentgenol 194(5):W407–W413
Todd DJ, Kay J (2016) Gadolinium-induced fibrosis. Annu Rev Med 67:273–291
Thomsen HS et al (2013) Nephrogenic systemic fibrosis and gadolinium-based contrast media: updated ESUR contrast medium safety committee guidelines. Eur Radiol 23(2):307–318
Wolf M et al (2018) Magnetic resonance imaging T1- and T2-mapping to assess renal structure and function: a systematic review and statement paper. Nephrol Dial Transpl 33(suppl_2):ii41–ii50
Hueper K et al (2014) T1-mapping for assessment of ischemia-induced acute kidney injury and prediction of chronic kidney disease in mice. Eur Radiol 24(9):2252–2260
Peperhove M et al (2018) Assessment of acute kidney injury with T1 mapping MRI following solid organ transplantation. Eur Radiol 28:44–50
Geisinger MA et al (1984) Magnetic resonance imaging of renal transplants. AJR Am J Roentgenol 143:1229–1234
Winsett MZ et al (1988) Renal transplant dysfunction: MR evaluation. AJR Am J Roentgenol 150:319–323
Hricak H, Terrier F, Demas BE (1986) Renal allografts: evaluation by MR imaging. Radiology 159:435–441
Baumgartner BR et al (1986) MR imaging of renal transplants. AJR Am J Roentgenol 147:949–953
Hricak H et al (1987) Posttransplant renal rejection: comparison of quantitative scintigraphy, US, and MR imaging. Radiology 162:685–688
Steinberg HV et al (1987) Renal allograft rejection: evaluation by Doppler US and MR imaging. Radiology 162:337–342
Liou JT et al (1991) Renal transplants: can acute rejection and acute tubular necrosis be differentiated with MR imaging? Radiology 179:61–65
Vyhnanovska P et al (2011) In vivo 31P MR spectroscopy of human kidney grafts using the 2D-chemical shift imaging method. Transpl Proc 43:1570–1575
Kentrup D et al (2017) GlucoCEST magnetic resonance imaging in vivo may be diagnostic of acute renal allograft rejection. Kidney Int 92:757–764
Alam SR et al (2015) Nanoparticle enhanced MRI scanning to detect cellular inflammation in experimental chronic renal allograft rejection. Int J Mol Imaging 2015:507909
Hauger O et al (2000) Nephrotoxic nephritis and obstructive nephropathy: evaluation with MR imaging enhanced with ultrasmall superparamagnetic iron oxide-preliminary findings in a rat model. Radiology 217(3):819–826
Jo SK et al (2003) Detection of inflammation following renal ischemia by magnetic resonance imaging. Kidney Int 64(1):43–51
Ye Q et al (2002) In vivo detection of acute rat renal allograft rejection by MRI with USPIO particles. Kidney Int 61(3):1124–1135
Hauger O et al (2007) USPIO-enhanced MR imaging of macrophage infiltration in native and transplanted kidneys: initial results in humans. Eur Radiol 17(11):2898–2907
Kline TL et al (2016) Utilizing magnetization transfer imaging to investigate tissue remodeling in a murine model of autosomal dominant polycystic kidney disease. Magn Reson Med 75(4):1466–1473
Jiang K et al (2017) Noninvasive assessment of renal fibrosis with magnetization transfer MR imaging: validation and evaluation in murine renal artery stenosis. Radiology 283(1):77–86
Jiang K et al (2018) Multiparametric MRI detects longitudinal evolution of folic acid-induced nephropathy in mice. Am J Physiol Renal Physiol 315(5):F1252–F1260
Jiang K et al (2019) Magnetization transfer imaging is unaffected by decreases in renal perfusion in swine. Invest Radiol 54(11):681–688
Kim JK et al (2017) Role of magnetic resonance elastography as a noninvasive measurement tool of fibrosis in a renal allograft: a case report. Transpl Proc 49:1555–1559
Lee CU et al (2012) MR elastography in renal transplant patients and correlation with renal allograft biopsy: a feasibility study. Acad Radiol 19:834–841
Kirpalani A et al (2017) Magnetic resonance elastography to assess fibrosis in kidney allografts. Clin J Am Soc Nephrol CJASN 12:1671–1679
Sharif A, Borrows R (2013) Delayed graft function after kidney transplantation: the clinical perspective. Am J Kidney Dis 62(1):150–158
Schroppel B, Legendre C (2014) Delayed kidney graft function: from mechanism to translation. Kidney Int 86(2):251–258
Lanzman RS et al (2013) Kidney transplant: functional assessment with diffusion-tensor MR imaging at 3T. Radiology 266:218–225
Hueper K et al (2011) Diffusion tensor imaging and tractography for assessment of renal allograft dysfunction-initial results. Eur Radiol 21:2427–2433
Fan WJ et al (2016) Assessment of renal allograft function early after transplantation with isotropic resolution diffusion tensor imaging. Eur Radiol 26(2):567–575
Ren T et al (2016) Evaluation of renal allografts function early after transplantation using intravoxel incoherent motion and arterial spin labeling MRI. Magn Reson Imaging 34(7):908–914
Thoeny HC et al (2006) Functional evaluation of transplanted kidneys with diffusion-weighted and BOLD MR imaging: initial experience. Radiology 241:812–821
Eisenberger U et al (2014) Living renal allograft transplantation: diffusion-weighted MR imaging in longitudinal follow-up of the donated and the remaining kidney. Radiology 270:800–808
Blondin D et al (2009) Functional MRI of transplanted kidneys using diffusion-weighted imaging. Rofo 181(12):1162–1167
Slawinska A et al (2018) Noninvasive evaluation of renal tissue oxygenation with blood oxygen level-dependent magnetic resonance imaging early after transplantation has a limited predictive value for the delayed graft function. Pol J Radiol 83:e389–e393
Djamali A et al (2007) BOLD-MRI assessment of intrarenal oxygenation and oxidative stress in patients with chronic kidney allograft dysfunction. Am J Physiol Renal Physiol 292:F513–F522
Sun J et al (2019) Assessment of delayed graft function using susceptibility-weighted imaging in the early period after kidney transplantation: a feasibility study. Abdom Radiol (N Y) 44:218–226
Heusch P et al (2014) Functional evaluation of transplanted kidneys using arterial spin labeling MRI. J Magn Reson Imaging 40(1):84–89
Hueper K et al (2015) Functional MRI detects perfusion impairment in renal allografts with delayed graft function. Am J Physiol Renal Physiol 308:F1444–F1451
Lange D et al (2018) Renal volume assessed by magnetic resonance imaging volumetry correlates with renal function in living kidney donors pre- and postdonation: a retrospective cohort study. Transpl Int off J Eur Soc Organ Transpl 31:773–780
Mibu H et al (2015) Estimated functional renal parenchymal volume predicts the split renal function following renal surgery. World J Urol 33(10):1571–1577
Saemann M, Horl WH (2008) Urinary tract infection in renal transplant recipients. Eur J Clin Invest 38(Suppl 2):58–65
Faletti R et al (2016) Acute pyelonephritis in transplanted kidneys: can diffusion-weighted magnetic resonance imaging be useful for diagnosis and follow-up? Abdom Radiol (N Y) 41:531–537
Thoeny HC, De Keyzer F (2011) Diffusion-weighted MR imaging of native and transplanted kidneys. Radiology 259:25–38
Lair M et al (2018) Diffusion tensor imaging in acute pyelonephritis in children. Pediatr Radiol 48(8):1081–1085
Vivier PH et al (2014) MRI and suspected acute pyelonephritis in children: comparison of diffusion-weighted imaging with gadolinium-enhanced T1-weighted imaging. Eur Radiol 24(1):19–25
Derlin T et al (2017) Integrating MRI and chemokine receptor CXCR4-targeted PET for detection of leukocyte infiltration in complicated urinary tract infections after kidney transplantation. J Nucl Med 58(11):1831–1837
Wong W et al (1996) Transplant renal artery stenosis in 77 patients—does it have an immunological cause? Transplantation 61(2):215–219
Dimitroulis D et al (2009) Vascular complications in renal transplantation: a single-center experience in 1367 renal transplantations and review of the literature. Transpl Proc 41(5):1609–1614
Salehipour M et al (2009) Vascular complications following 1500 consecutive living and cadaveric donor renal transplantations: a single center study. Saudi J Kidney Dis Transpl 20(4):570–572
Carvalho JA et al (2019) Surgical complications in kidney transplantation: an overview of a portuguese reference center. Transpl Proc 51(5):1590–1596
Faucon AL, Bobrie G, Clement O (2019) Nephrotoxicity of iodinated contrast media: from pathophysiology to prevention strategies. Eur J Radiol 116:231–241
Spasojevic-Dimitrijeva B et al (2017) Serum neutrophil gelatinase-associated lipocalin and urinary kidney injury molecule-1 as potential biomarkers of subclinical nephrotoxicity after gadolinium-based and iodinated-based contrast media exposure in pediatric patients with normal kidney function. Med Sci Monit 23:4299–4305
Kane GC et al (2008) Comparison between gadolinium and iodine contrast for percutaneous intervention in atherosclerotic renal artery stenosis: clinical outcomes. Nephrol Dial Transpl 23(4):1233–1240
Prince MR, Arnoldus C, Frisoli JK (1996) Nephrotoxicity of high-dose gadolinium compared with iodinated contrast. J Magn Reson Imaging 6(1):162–166
Nathell L, Gohlke A, Wohlfeil S (2019) Reported severe hypersensitivity reactions after intravenous iron administration in the European economic area (EEA) before and after implementation of risk minimization measures. Drug Saf 42:463–471
Adkinson NF et al (2018) Comparative safety of intravenous ferumoxytol versus ferric carboxymaltose in iron deficiency anemia: a randomized trial. Am J Hematol 93(5):683–690
Fananapazir G et al (2017) Comparison of ferumoxytol-enhanced MRA with conventional angiography for assessment of severity of transplant renal artery stenosis. J Magn Reson Imaging JMRI 45:779–785
Bashir MR et al (2013) Renal transplant imaging using magnetic resonance angiography with a nonnephrotoxic contrast agent. Transplantation 96:91–96
Corwin MT, Fananapazir G, Chaudhari AJ (2016) MR angiography of renal transplant vasculature with ferumoxytol: comparison of high-resolution steady-state and first-pass acquisitions. Acad Radiol 23(3):368–373
Sadej P, Feld RI, Frank A (2009) Transplant renal vein thrombosis: role of preoperative and intraoperative Doppler sonography. Am J Kidney Dis 54(6):1167–1170
Zhang LJ et al (2018) Non-contrast-enhanced magnetic resonance angiography: a reliable clinical tool for evaluating transplant renal artery stenosis. Eur Radiol 28:4195–4204
Tang H et al (2014) Depiction of transplant renal vascular anatomy and complications: unenhanced MR angiography by using spatial labeling with multiple inversion pulses. Radiology 271:879–887
Aguera Fernandez LG et al (1992) Vascular complications in 237 recipients of renal transplant from cadaver. Actas Urol Esp 16(4):292–295
Sutherland RS et al (1993) Renal artery stenosis after renal transplantation: the impact of the hypogastric artery anastomosis. J Urol 149(5):980–985
Sankari BR et al (1996) Post-transplant renal artery stenosis: impact of therapy on long-term kidney function and blood pressure control. J Urol 155(6):1860–1864
Patel NH et al (2001) Renal arterial stenosis in renal allografts: retrospective study of predisposing factors and outcome after percutaneous transluminal angioplasty. Radiology 219(3):663–667
Schoenberg SO et al (2005) High-spatial-resolution MR angiography of renal arteries with integrated parallel acquisitions: comparison with digital subtraction angiography and US. Radiology 235(2):687–698
Liu X et al (2009) Renal transplant: nonenhanced renal MR angiography with magnetization-prepared steady-state free precession. Radiology 251:535–542
Lanzman RS et al (2009) ECG-gated nonenhanced 3D steady-state free precession MR angiography in assessment of transplant renal arteries: comparison with DSA. Radiology 252:914–921
Hwang JK et al (2013) Contrast-enhanced magnetic resonance angiography in the early period after kidney transplantation. Transpl Proc 45:2925–2930
Gedroyc WM et al (1992) Magnetic resonance angiography of renal transplants. Lancet (Lond Engl) 339:789–791
Huber A et al (2001) Contrast-enhanced MR angiography in patients after kidney transplantation. Eur Radiol 11:2488–2495
Stecco A et al (2007) Contrast-bolus MR angiography of the transplanted kidney with a low-field (0.5-T) scanner: diagnostic accuracy, sensitivity and specificity of images and reconstructions in the evaluation of vascular complications. La Radiol Medica 112:1026–1035
Johnson DB et al (1997) Gadolinium-enhanced magnetic resonance angiography of renal transplants. Magn Reson Imaging 15:13–20
Lanzman RS et al (2009) ECG-gated nonenhanced 3D steady-state free precession MR angiography in assessment of transplant renal arteries: comparison with DSA. Radiology 252(3):914–921
Joarder R, Gedroyc WM (2001) Magnetic resonance angiography: the state of the art. Eur Radiol 11(3):446–453
Gaddikeri S et al (2014) Comparing the diagnostic accuracy of contrast-enhanced computed tomographic angiography and gadolinium-enhanced magnetic resonance angiography for the assessment of hemodynamically significant transplant renal artery stenosis. Curr Probl Diagn Radiol 43:162–168
McCarty M, Gedroyc WM (1993) Surgical clip artefact mimicking arterial stenosis: a problem with magnetic resonance angiography. Clin Radiol 48(4):232–235
Zhang LJ et al (2018) Non-contrast-enhanced magnetic resonance angiography: a reliable clinical tool for evaluating transplant renal artery stenosis. Eur Radiol 28(10):4195–4204
Choate HR, Mihalko LA, Choate BT (2019) Urologic complications in renal transplants. Transl Androl Urol 8(2):141–147
Leyendecker JR, Barnes CE, Zagoria RJ (2008) MR urography: techniques and clinical applications. Radiographics 28(1):23–46 (discussion 46–7)
Sandhu C, Patel U (2002) Renal transplantation dysfunction: the role of interventional radiology. Clin Radiol 57(9):772–783
Browne RFJ, Tuite DJ (2006) Imaging of the renal transplant: comparison of MRI with duplex sonography. Abdom Imaging 31:461–482
Schubert RA et al (2000) Imaging in ureteral complications of renal transplantation: value of static fluid MR urography. Eur Radiol 10(7):1152–1157
Hussain S et al (1997) MR urography. Magn Reson Imaging Clin N Am 5(1):95–106
Blondin D et al (2009) Renal transplant failure due to urologic complications: comparison of static fluid with contrast-enhanced magnetic resonance urography. Eur J Radiol 69:324–330
Rohrschneider WK et al (2000) Combined static-dynamic MR urography for the simultaneous evaluation of morphology and function in urinary tract obstruction. II. Findings in experimentally induced ureteric stenosis. Pediatr Radiol 30(8):523–532
Balci NC et al (2005) Renal-related perinephric fluid collections: MRI findings. Magn Reson Imaging 23(5):679–684
Borens B et al (2017) Added value of diffusion-weighted magnetic resonance imaging for the detection of pancreatic fluid collection infection. Eur Radiol 27(3):1064–1073
Neubauer H et al (2012) Diffusion-weighted MRI of abscess formations in children and young adults. World J Pediatr 8(3):229–234
Author information
Authors and Affiliations
Contributions
R. Schutter: drafting the manuscript. V.A. Lantinga: drafting the manuscript. R.J.H. Borra: critical revision. C. Moers: critical revision.
Corresponding author
Ethics declarations
Conflict of interest
All authors declare that they have no conflict of interest.
Human and animals rights
This article does not contain any studies with human participants or animals performed by any of the authors.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Schutter, R., Lantinga, V.A., Borra, R.J.H. et al. MRI for diagnosis of post-renal transplant complications: current state-of-the-art and future perspectives. Magn Reson Mater Phy 33, 49–61 (2020). https://doi.org/10.1007/s10334-019-00813-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10334-019-00813-8