Skip to main content

Advertisement

Log in

Effect of combination and number of b values in IVIM analysis with post-processing methodology: simulation and clinical study

  • Short Communication
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

To investigate the effect of number and combination of b values used on the accuracy of estimated Intravoxel Incoherent Motion (IVIM) parameters using simulation and clinical data.

Materials and methods

Simulations with seven combinations of b values were performed for 4, 6, 8, and 13 numbers of b values with six different values of D, D*, and f parameters. Two methodologies were implemented for IVIM analysis: standard biexponential model (BE) and biexponential model with total variation penalty function (BE + TV). Clinical data set of six patients with prostate cancer was retrospectively analyzed using 4, 8, and 13 b values.

Results

BE + TV method showed lesser error and lower variability in simulation and clinical data, respectively. 8 and 13 b values showed good agreement in the values of parameters estimated with high correlation coefficient (ρ = 0.83–0.93). Clinical data showed high spurious noise with lower b values [4 b values leading to high coefficient of variation (CV); however, substantially, lower CV was observed with 8 and 13 b values].

Discussion

BE model with TV penalty function is robust to combination of b values used for IVIM analysis. Combination of 8 b values provided a reasonably good accuracy in IVIM parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Haider MA, Van Der Kwast TH, Tanguay J, Evans AJ, Hashmi A-T, Lockwood G, Trachtenberg J (2007) Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer. AJR Am J Roentgenol 189:323–328

    Article  Google Scholar 

  2. Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292

    Article  CAS  Google Scholar 

  3. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505

    Article  Google Scholar 

  4. Kayal EB, Kandasamy D, Khare K, Alampally JT, Bakhshi S, Sharma R, Mehndiratta A (2017) Quantitative analysis of intravoxel incoherent motion (IVIM) diffusion MRI using total variation and huber penalty function. Med Phys 44:5849–5858

    Article  CAS  Google Scholar 

  5. Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Phys D 60:259–268

    Article  Google Scholar 

  6. Vogel CR, Oman ME (1996) Iterative methods for total variation denoising. SIAM J Sci Comput 17:227–238

    Article  Google Scholar 

  7. Sidky EY, Pan X (2008) Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys Med Biol 53:4777

    Article  Google Scholar 

  8. Shinmoto H, Tamura C, Soga S, Shiomi E, Yoshihara N, Kaji T, Mulkern RV (2012) An intravoxel incoherent motion diffusion-weighted imaging study of prostate cancer. AJR Am J Roentgenol 199:496–500

    Article  Google Scholar 

  9. Dyvorne H, Jajamovich G, Kakite S, Kuehn B, Taouli B (2014) Intravoxel incoherent motion diffusion imaging of the liver: optimal b-value subsampling and impact on parameter precision and reproducibility. Eur J Radiol 83:2109–2113

    Article  Google Scholar 

  10. Mazzoni LN, Lucarini S, Chiti S, Busoni S, Gori C, Menchi I (2014) Diffusion-weighted signal models in healthy and cancerous peripheral prostate tissues: comparison of outcomes obtained at different b-values. J Magn Reson Imaging 39:512–518

    Article  Google Scholar 

  11. Beyhan M, Sade R, Koc E, Adanur S, Kantarci M (2018) The evaluation of prostate lesions with IVIM DWI and MR perfusion parameters at 3T MRI. Radiol Med 1–7.

  12. Döpfert J, Lemke A, Weidner A, Schad LR (2011) Investigation of prostate cancer using diffusion-weighted intravoxel incoherent motion imaging. Magn Reson Imaging 29:1053–1058

    Article  Google Scholar 

  13. Lemke A, Stieltjes B, Schad LR, Laun FB (2011) Toward an optimal distribution of b values for intravoxel incoherent motion imaging. Magn Reson Imaging 29:766–776

    Article  Google Scholar 

  14. Zhang JL, Sigmund EE, Rusinek H, Chandarana H, Storey P, Chen Q, Lee VS (2012) Optimization of b-value sampling for diffusion-weighted imaging of the kidney. Magn Reson Med 67:89–97

    Article  Google Scholar 

  15. Merisaari H, Jambor I (2015) Optimization of b-value distribution for four mathematical models of prostate cancer diffusion-weighted imaging using b values up to 2000 s/mm2: simulation and repeatability study. Magn Reson Med 73:1954–1969

    Article  Google Scholar 

  16. Cho GY, Moy L, Zhang JL, Baete S, Lattanzi R, Moccaldi M, Babb JS, Kim S, Sodickson DK, Sigmund EE (2015) Comparison of fitting methods and b-value sampling strategies for intravoxel incoherent motion in breast cancer. Magn Reson Med 74:1077–1085

    Article  Google Scholar 

  17. Cohen AD, Schieke MC, Hohenwalter MD, Schmainda KM (2015) The effect of low b-values on the intravoxel incoherent motion derived pseudodiffusion parameter in liver. Magn Reson Med 73:306–311

    Article  Google Scholar 

  18. Jones DK, Horsfield MA, Simmons A (1999) Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson Med An Off J Int Soc Magn Reson Med 42:515–525

    Article  CAS  Google Scholar 

  19. Leporq B, Saint-Jalmes H, Rabrait C, Pilleul F, Guillaud O, Dumortier J, Scoazec J, Beuf O (2015) Optimization of intra-voxel incoherent motion imaging at 3.0 Tesla for fast liver examination. J Magn Reson Imaging 41:1209–1217

    Article  Google Scholar 

  20. Jambor I, Merisaari H, Aronen HJ, Järvinen J, Saunavaara J, Kauko T, Borra R, Pesola M (2014) Optimization of b-value distribution for biexponential diffusion-weighted MR imaging of normal prostate. J Magn Reson imaging 39:1213–1222

    Article  Google Scholar 

  21. Andreou A, Koh DM, Collins DJ, Blackledge M, Wallace T, Leach MO, Orton MR (2013) Measurement reproducibility of perfusion fraction and pseudodiffusion coefficient derived by intravoxel incoherent motion diffusion-weighted MR imaging in normal liver and metastases. Eur Radiol 23:428–434

    Article  CAS  Google Scholar 

  22. Pang Y, Turkbey B, Bernardo M, Kruecker J, Kadoury S, Merino MJ, Wood BJ, Pinto PA, Choyke PL (2013) Intravoxel incoherent motion MR imaging for prostate cancer: an evaluation of perfusion fraction and diffusion coefficient derived from different b-value combinations. Magn Reson Med 69:553–562

    Article  Google Scholar 

  23. Meeus EM, Novak J, Dehghani H, Peet AC (2018) Rapid measurement of intravoxel incoherent motion (IVIM) derived perfusion fraction for clinical magnetic resonance imaging. Magn Reson Mater Phy 31:269–283

    Article  Google Scholar 

  24. Gudbjartsson H, Patz S (1995) The rician distribution of noisy mri data. Magn Reson Med 34(6):910–914

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors sincerely thank Ms. Esha Badiya Kayal for providing the codes of BE + TV algorithm and her support and mentorship in processing. The authors would like to acknowledge support staffs of IIT Delhi, New Delhi and AIIMS Delhi, New Delhi. A.V.M was supported with research fellowship, funded by Ministry of Human Resource Development, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

AVM: study conception and design, acquisition of data, analysis and interpretation of data, drafting of manuscript, and critical revision. CJD: acquisition of data and analysis and interpretation of data. KK: analysis and interpretation of data. FC: analysis and interpretation of data, drafting of manuscript, critical revision. AM: study conception and design, analysis and interpretation of data, drafting of manuscript, critical revision.

Corresponding author

Correspondence to Amit Mehndiratta.

Ethics declarations

Conflict of interest

All authors declare that he/she has no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malagi, A.V., Das, C.J., Khare, K. et al. Effect of combination and number of b values in IVIM analysis with post-processing methodology: simulation and clinical study. Magn Reson Mater Phy 32, 519–527 (2019). https://doi.org/10.1007/s10334-019-00764-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-019-00764-0

Keywords

Navigation