Advertisement

Towards Ni(II) complexes with spin switches for 19F MR-based pH sensing

  • Da Xie
  • Lauren E. Ohman
  • Emily L. QueEmail author
Research Article

Abstract

Objectives

Our aim was to demonstrate the potential of exploiting simultaneous changes in coordination geometry and spin state in fluorinated Ni(II) complexes as an avenue for 19F magnetic-resonance (MR)-based pH sensing.

Materials and methods

Crystal structures were studied using an Agilent Technologies SuperNova Dual Source diffractometer. Solution magnetic moment was determined using Evan’s method. MR images were collected on a 7.0-T MR scanner equipped with a quadrature 19F volume coil.

Results

NiL1 and NiL2 were synthesized; crystallographic and spectroscopic data supported NiL1 as being diamagnetic and NiL2 as being paramagnetic. In aqueous solution, ligand dissociation from Ni(II) center was observed for both complexes at around pH 6, precluding their use as reversible pH sensors. The two complexes have distinct 19F nuclear magnetic resonance (NMR) signals in terms of both chemical shift and relaxation times, and selective imaging of the two complexes was achieved with no signal interference using two 19F MRI pulse sequences.

Conclusion

The significant difference in the chemical shift and relaxation times between NiL1 and NiL2 allowed selective imaging of these species using 19F MRI. While NiL1 and NiL2 were not stable to acidic environments, this report lays the framework for development of improved ligand scaffolds that stably coordinate Ni(II) in acidic aqueous solution and act as agents for ratiometric pH mapping by 19F MRI.

Keywords

Fluorine-19 magnetic resonance imaging Contrast media Coordination complexes Acidosis 

Notes

Acknowledgements

This work was funded by a grant from the Welch Foundation (F1883) (EQ). We gratefully acknowledge Dr. Vincent Lynch for X-ray crystallography support, Dr. Sam Einstein and Dr. James Bankson for help with MR imaging, and Que group members for discussions.

Author contributions

DX study conception and design, acquisition of data, analysis and interpretation of data, drafting of manuscript, critical revision. LO acquisition of data. EQ study conception and design, analysis, and interpretation of data, drafting of manuscript, critical revision.

Compliance with ethical standards

Conflict of interest

No conflicts of interest or funding sources are declared.

Ethical approval

This article does not contain any studies performed with animals or human subjects.

Supplementary material

10334_2018_698_MOESM1_ESM.docx (590 kb)
Supplementary material 1 (DOCX 590 kb)
10334_2018_698_MOESM2_ESM.cif (437 kb)
Supplementary material 2 (CIF 437 kb)

References

  1. 1.
    Tannock IF, Rotin D (1989) Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 49(16):4373–4384Google Scholar
  2. 2.
    Hanahan D, Weinberg Robert A (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674CrossRefGoogle Scholar
  3. 3.
    Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314CrossRefGoogle Scholar
  4. 4.
    Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891CrossRefGoogle Scholar
  5. 5.
    Corbet C, Feron O (2017) Tumour acidosis: from the passenger to the driver’s seat. Nat Rev Cancer 17:577CrossRefGoogle Scholar
  6. 6.
    Mahoney BP, Raghunand N, Baggett B, Gillies RJ (2003) Tumor acidity, ion trapping and chemotherapeutics: I. Acid pH affects the distribution of chemotherapeutic agents in vitro. Biochem Pharmacol 66(7):1207–1218CrossRefGoogle Scholar
  7. 7.
    Gatenby RA, Gawlinski ET, Gmitro AF, Kaylor B, Gillies RJ (2006) Acid-mediated tumor invasion: a multidisciplinary study. Cancer Res 66(10):5216–5223CrossRefGoogle Scholar
  8. 8.
    Schreml S, Meier RJ, Wolfbeis OS, Landthaler M, Szeimies R-M, Babilas P (2011) 2D luminescence imaging of pH in vivo. Proc Natl Acad Sci 108(6):2432–2437CrossRefGoogle Scholar
  9. 9.
    Maeda H, Kowada T, Kikuta J, Furuya M, Shirazaki M, Mizukami S, Ishii M, Kikuchi K (2016) Real-time intravital imaging of pH variation associated with osteoclast activity. Nat Chem Biol 12:579CrossRefGoogle Scholar
  10. 10.
    Luca F, Ciprian C, Thomas B, Dean SA, Peter C (2010) Bimodal MR–PET agent for quantitative pH imaging. Angew Chem Int Ed 49(13):2382–2384CrossRefGoogle Scholar
  11. 11.
    Longo DL, Bartoli A, Consolino L, Bardini P, Arena F, Schwaiger M, Aime S (2016) In vivo imaging of tumor metabolism and acidosis by combining PET and MRI-CEST pH imaging. Cancer Res 76(22):6463–6470CrossRefGoogle Scholar
  12. 12.
    Demoin DW, Wyatt LC, Edwards KJ, Abdel-Atti D, Sarparanta M, Pourat J, Longo VA, Carlin SD, Engelman DM, Andreev OA, Reshetnyak YK, Viola-Villegas N, Lewis JS (2016) PET imaging of extracellular pH in tumors with 64Cu- and 18F-labeled pHLIP peptides: a structure-activity optimization study. Bioconjug Chem 27(9):2014–2023CrossRefGoogle Scholar
  13. 13.
    Shanrong Z, Kuangcong W, Dean SA (1999) A novel pH-sensitive MRI contrast agent. Angew Chem Int Ed 38(21):3192–3194CrossRefGoogle Scholar
  14. 14.
    Silvio A, Daniela DC, Enzo T (2002) Novel pH-reporter MRI contrast agents. Angew Chem Int Ed 41(22):4334–4336CrossRefGoogle Scholar
  15. 15.
    Silvio A, Alessandro B, Daniela DC, Franco F, Armando M, Nielsen FU, Terreno E (2002) Paramagnetic lanthanide(III) complexes as pH-sensitive chemical exchange saturation transfer (CEST) contrast agents for MRI applications. Magn Reson Med 47(4):639–648CrossRefGoogle Scholar
  16. 16.
    Soler-Padrós J, Pérez-Mayoral E, Domínguez L, López-Larrubia P, Soriano E, Marco-Contelles JL, Cerdán S, Ballesteros P (2007) Novel generation of pH indicators for proton magnetic resonance spectroscopic imaging. J Med Chem 50(18):4539–4542CrossRefGoogle Scholar
  17. 17.
    Sv R, Guanshu L, Yuguo L, Pagel MD (2012) Improved pH measurements with a single PARACEST MRI contrast agent. Contrast Media Mol Imaging 7(1):26–34CrossRefGoogle Scholar
  18. 18.
    Longo DL, Sun PZ, Consolino L, Michelotti FC, Uggeri F, Aime S (2014) A general MRI-CEST ratiometric approach for pH imaging: demonstration of in vivo pH mapping with iobitridol. J Am Chem Soc 136(41):14333–14336CrossRefGoogle Scholar
  19. 19.
    Düwel S, Hundshammer C, Gersch M, Feuerecker B, Steiger K, Buck A, Walch A, Haase A, Glaser SJ, Schwaiger M, Schilling F (2017) Imaging of pH in vivo using hyperpolarized 13C-labelled zymonic acid. Nat Commun 8:15126CrossRefGoogle Scholar
  20. 20.
    Thorarinsdottir AE, Du K, Collins JHP, Harris TD (2017) Ratiometric pH imaging with a CoII2 MRI probe via CEST effects of opposing pH dependences. J Am Chem Soc 139(44):15836–15847CrossRefGoogle Scholar
  21. 21.
    Hall J, Haner R, Aime S, Botta M, Faulkner S, Parker D, de Sousa AS (1998) Relaxometric and luminescence behaviour of triaquahexaazamacrocyclic complexes, the gadolinium complex displaying a high relaxivity with a pronounced pH dependence. New J Chem 22(6):627–631CrossRefGoogle Scholar
  22. 22.
    Woods M, Kiefer GE, Bott S, Castillo-Muzquiz A, Eshelbrenner C, Michaudet L, McMillan K, Mudigunda SDK, Ogrin D, Tircsó G, Zhang S, Zhao P, Sherry AD (2004) Synthesis, relaxometric and photophysical properties of a new pH-responsive MRI contrast agent: the effect of other ligating groups on dissociation of a p-nitrophenolic pendant arm. J Am Chem Soc 126(30):9248–9256CrossRefGoogle Scholar
  23. 23.
    Tirotta I, Dichiarante V, Pigliacelli C, Cavallo G, Terraneo G, Bombelli FB, Metrangolo P, Resnati G (2015) 19F magnetic resonance imaging (MRI): from design of materials to clinical applications. Chem Rev 115(2):1106–1129CrossRefGoogle Scholar
  24. 24.
    Ruiz-Cabello J, Barnett BP, Bottomley PA, Bulte JW (2011) Fluorine (19F) MRS and MRI in biomedicine. NMR Biomed 24(2):114–129CrossRefGoogle Scholar
  25. 25.
    Lowe MP, Parker D, Reany O, Aime S, Botta M, Castellano G, Gianolio E, Pagliarin R (2001) pH-dependent modulation of relaxivity and luminescence in macrocyclic gadolinium and europium complexes based on reversible intramolecular sulfonamide ligation. J Am Chem Soc 123(31):7601–7609CrossRefGoogle Scholar
  26. 26.
    Gaudette AI, Thorarinsdottir AE, Harris TD (2017) pH-dependent spin state population and 19F NMR chemical shift via remote ligand protonation in an iron(ii) complex. Chem Commun 53(96):12962–12965CrossRefGoogle Scholar
  27. 27.
    Meyer F, Kozlowski H (2003) 6.3 Nickel. Comprehensive coordination chemistry II. Oxford, Pergamon, pp 247–554CrossRefGoogle Scholar
  28. 28.
    Venkataramani S, Jana U, Dommaschk M, Sönnichsen FD, Tuczek F, Herges R (2011) Magnetic bistability of molecules in homogeneous solution at room temperature. Science 331(6016):445–448CrossRefGoogle Scholar
  29. 29.
    Thies S, Sell H, Schütt C, Bornholdt C, Näther C, Tuczek F, Herges R (2011) Light-induced spin change by photodissociable external ligands: a new principle for magnetic switching of molecules. J Am Chem Soc 133(40):16243–16250CrossRefGoogle Scholar
  30. 30.
    Fabbrizzi L, Micheloni M, Paoletti P (1980) A microcalorimetric determination of the enthalpies of formation in solution of nickel(II) complexes with tetraaza macrocyclic ligands of varying size. Inorg Chem 19(2):535–538CrossRefGoogle Scholar
  31. 31.
    Kimura E, Koike T, Nada H, Iitaka Y (1988) First X-ray crystal structures of nickel(II)-oxocyclam complexes. Effects of the deprotonated amide and of an intramolecular pendant pyridine on cyclam ligand field. Inorg Chem 27(6):1036–1040CrossRefGoogle Scholar
  32. 32.
    Evans DF (1959) 400. The determination of the paramagnetic susceptibility of substances in solution by nuclear magnetic resonance. J Chem Soc (Resumed) 0:2003–2005CrossRefGoogle Scholar
  33. 33.
    Ohtsu H, Tanaka K (2004) Equilibrium of low- and high-spin states of Ni(II) complexes controlled by the donor ability of the bidentate ligands. Inorg Chem 43(9):3024–3030.  https://doi.org/10.1021/ic035486+ CrossRefGoogle Scholar
  34. 34.
    Kimura E, Shionoya M, Okamoto M, Nada H (1988) The first fluorinated cyclams. J Am Chem Soc 110(11):3679–3680CrossRefGoogle Scholar
  35. 35.
    Tirotta I, Mastropietro A, Cordiglieri C, Gazzera L, Baggi F, Baselli G, Bruzzone MG, Zucca I, Cavallo G, Terraneo G, Baldelli Bombelli F, Metrangolo P, Resnati G (2014) A superfluorinated molecular probe for highly sensitive in vivo 19F-MRI. J Am Chem Soc 136(24):8524–8527CrossRefGoogle Scholar

Copyright information

© European Society for Magnetic Resonance in Medicine and Biology (ESMRMB) 2018

Authors and Affiliations

  1. 1.Department of ChemistryThe University of Texas at AustinAustinUSA

Personalised recommendations