Skip to main content
Log in

Magnetic resonance elastography can monitor changes in medullary stiffness in response to treatment in the swine ischemic kidney

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

Low-energy shockwave (SW) therapy attenuates damage in the stenotic kidney (STK) caused by atherosclerotic renal artery stenosis (ARAS). We hypothesized that magnetic resonance elastography (MRE) would detect attenuation of fibrosis following SW in unilateral ARAS kidneys.

Materials and methods

Domestic pigs were randomized to control, unilateral ARAS, and ARAS treated with 6 sessions of SW over 3 consecutive weeks (n = 7 each) starting after 3 weeks of ARAS or sham. Four weeks after SW treatment, renal fibrosis was evaluated with MRE in vivo or trichrome staining ex vivo. Blood pressure, single-kidney renal-blood-flow (RBF) and glomerular-filtration-rate (GFR) were assessed.

Results

MRE detected increased stiffness in the STK medulla (15.3 ± 2.1 vs. 10.1 ± 0.8 kPa, p < 0.05) that moderately correlated with severity of fibrosis (R2 = 0.501, p < 0.01), but did not identify mild STK cortical or contralateral kidney fibrosis. Trichrome staining showed that medullary fibrosis was increased in ARAS and alleviated by SW (10.4 ± 1.8% vs. 2.9 ± 0.2%, p < 0.01). SW slightly decreased blood pressure and normalized STK RBF and GFR in ARAS. In the contralateral kidney, SW reversed the increase in RBF and GFR.

Conclusion

MRE might be a tool for noninvasive monitoring of medullary fibrosis in response to treatment in kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

SW:

Shockwave

MRI:

Magnetic resonance imaging

MRE:

Magnetic resonance elastography

DWI:

Diffusion-weighted imaging

EPI:

Echo-planar imaging

MEG:

Motion encoding gradients

ROI:

Region of interest

MDCT:

Multi-detector computed tomography

ARAS:

Atherosclerotic renal artery stenosis

STK:

Stenotic kidney

CLK:

Contralateral kidney

RBF:

Renal blood flow

GFR:

Glomerular filtration rate

MAP:

Mean arterial pressure

References

  1. Plouin PF, Bax L (2010) Diagnosis and treatment of renal artery stenosis. Nat Rev Nephrol 6:151–159

    Article  PubMed  Google Scholar 

  2. Low G, Owen NE, Joubert I et al (2015) Reliability of magnetic resonance elastography using multislice two-dimensional spin-echo echo-planar imaging (SE-EPI) and three-dimensional inversion reconstruction for assessing renal stiffness. J Magn Reson Imaging 42:844–850

    Article  PubMed  Google Scholar 

  3. Hueper K, Khalifa AA, Brasen JH et al (2016) Diffusion-Weighted imaging and diffusion tensor imaging detect delayed graft function and correlate with allograft fibrosis in patients early after kidney transplantation. J Magn Reson Imaging 44:112–121

    Article  PubMed  Google Scholar 

  4. Jiang K, Ferguson CM, Woollard JR et al (2017) Magnetization transfer magnetic resonance imaging noninvasively detects renal fibrosis in swine atherosclerotic renal artery stenosis at 3.0 T. Invest Radiol 52:686–692

    Article  PubMed  Google Scholar 

  5. Kline TL, Irazabal MV, Ebrahimi B et al (2016) Utilizing magnetization transfer imaging to investigate tissue remodeling in a murine model of autosomal dominant polycystic kidney disease. Magn Reson Med 75:1466–1473

    Article  PubMed  CAS  Google Scholar 

  6. Ebrahimi B, Rihal N, Woollard JR et al (2014) Assessment of renal artery stenosis using intravoxel incoherent motion diffusion-weighted magnetic resonance imaging analysis. Invest Radiol 49:640–646

    Article  PubMed  PubMed Central  Google Scholar 

  7. Petitclerc L, Sebastiani G, Gilbert G et al (2017) Liver fibrosis: review of current imaging and MRI quantification techniques. J Magn Reson Imaging 45:1276–1295

    Article  PubMed  Google Scholar 

  8. Greenleaf JF, Fatemi M, Insana M (2003) Selected methods for imaging elastic properties of biological tissues. Annu Rev Biomed Eng 5:57–78

    Article  PubMed  CAS  Google Scholar 

  9. Yin M, Chen J, Glaser KJ et al (2009) Abdominal magnetic resonance elastography. Top Magn Reson Imaging 20:79–87

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rouviere O, Souchon R, Pagnoux G et al (2011) Magnetic resonance elastography of the kidneys: feasibility and reproducibility in young healthy adults. J Magn Reson Imaging 34:880–886

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lee CU, Glockner JF, Glaser KJ et al (2012) MR elastography in renal transplant patients and correlation with renal allograft biopsy: a feasibility study. Acad Radiol 19:834–841

    Article  PubMed  PubMed Central  Google Scholar 

  12. Korsmo MJ, Ebrahimi B, Eirin A et al (2013) Magnetic resonance elastography noninvasively detects in vivo renal medullary fibrosis secondary to swine renal artery stenosis. Invest Radiol 48:61–68

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cooper CJ, Murphy TP, Cutlip DE et al (2014) Stenting and medical therapy for atherosclerotic renal-artery stenosis. N Engl J Med 370:13–22

    Article  PubMed  CAS  Google Scholar 

  14. Textor SC (2011) Issues in renovascular disease and ischemic nephropathy: beyond ASTRAL. Curr Opin Nephrol Hypertens 20:139–145

    Article  PubMed  Google Scholar 

  15. Meier P, Rossert J, Plouin PF et al (2007) Atherosclerotic renovascular disease: beyond the renal artery stenosis. Nephrol Dial Transplant 22:1002–1006

    Article  PubMed  Google Scholar 

  16. Eirin A, Zhu XY, Urbieta-Caceres VH et al (2011) Persistent kidney dysfunction in swine renal artery stenosis correlates with outer cortical microvascular remodeling. Am J Physiol Renal Physiol 300:F1394–F1401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Fukumoto Y, Ito A, Uwatoku T et al (2006) Extracorporeal cardiac shock wave therapy ameliorates myocardial ischemia in patients with severe coronary artery disease. Coron Artery Dis 17:63–70

    Article  PubMed  Google Scholar 

  18. Wang CJ, Huang KE, Sun YC et al (2011) VEGF modulates angiogenesis and osteogenesis in shockwave-promoted fracture healing in rabbits. J Surg Res 171:114–119

    Article  PubMed  CAS  Google Scholar 

  19. Aicher A, Heeschen C, Sasaki K et al (2006) Low-energy shock wave for enhancing recruitment of endothelial progenitor cells: a new modality to increase efficacy of cell therapy in chronic hind limb ischemia. Circulation 114:2823–2830

    Article  PubMed  Google Scholar 

  20. Zhang X, Krier JD, Amador Carrascal C et al (2016) Low-Energy shockwave therapy improves ischemic kidney microcirculation. J Am Soc Nephrol 27:3715–3724

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Stulak JM, Lerman A, Porcel MR et al (2001) Renal vascular function in hypercholesterolemia is preserved by chronic antioxidant supplementation. J Am Soc Nephrol 12:1882–1891

    PubMed  CAS  Google Scholar 

  22. Chade AR, Rodriguez-Porcel M, Grande JP et al (2002) Distinct renal injury in early atherosclerosis and renovascular disease. Circulation 106:1165–1171

    Article  PubMed  Google Scholar 

  23. Muftuler LT (2013) Quantifying morphology and physiology of the human body using MRI. CRC Press, Boca Raton

    Book  Google Scholar 

  24. Sinkus R, Tanter M, Xydeas T et al (2005) Viscoelastic shear properties of in vivo breast lesions measured by MR elastography. Magn Reson Imaging 23:159–165

    Article  PubMed  Google Scholar 

  25. Warner L, Yin M, Glaser KJ et al (2011) Noninvasive In vivo assessment of renal tissue elasticity during graded renal ischemia using MR elastography. Invest Radiol 46:509–514

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kotecha M, Magin RL, Mao JJ (2017) Magnetic resonance imaging in tissue engineering. Wiley, Hoboken

    Book  Google Scholar 

  27. Kline TL, Edwards ME, Garg I et al (2017) Quantitative MRI of kidneys in renal disease. Abdom Radiol (NY). https://doi.org/10.1007/s00261-017-1236-y

    Article  Google Scholar 

  28. Ebrahimi B, Gloviczki M, Woollard JR et al (2012) Compartmental analysis of renal BOLD MRI data: introduction and validation. Invest Radiol 47:175–182

    PubMed  PubMed Central  Google Scholar 

  29. Daghini E, Primak AN, Chade AR et al (2007) Assessment of renal hemodynamics and function in pigs with 64-section multidetector CT: comparison with electron-beam CT. Radiology 243:405–412

    Article  PubMed  Google Scholar 

  30. Lerman LO, Textor SC, Grande JP (2009) Mechanisms of tissue injury in renal artery stenosis: ischemia and beyond. Prog Cardiovasc Dis 52:196–203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Brodsky SV, Yamamoto T, Tada T et al (2002) Endothelial dysfunction in ischemic acute renal failure: rescue by transplanted endothelial cells. Am J Physiol Renal Physiol 282:F1140–F1149

    Article  PubMed  CAS  Google Scholar 

  32. Johns EJ (2009) Inflammation: the underlying foe in renovascular hypertension? J Hypertens 27:1964–1965

    Article  PubMed  CAS  Google Scholar 

  33. Vaidya VS, Ford GM, Waikar SS et al (2009) A rapid urine test for early detection of kidney injury. Kidney Int 76:108–114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Eddy AA (1998) Interstitial fibrosis in hypercholesterolemic rats: role of oxidation, matrix synthesis, and proteolytic cascades. Kidney Int 53:1182–1189

    Article  PubMed  CAS  Google Scholar 

  35. Zhang H, Sun SC (2015) NF-kappaB in inflammation and renal diseases. Cell Biosci 5:63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Chade AR, Bentley MD, Zhu X et al (2004) Antioxidant intervention prevents renal neovascularization in hypercholesterolemic pigs. J Am Soc Nephrol 15:1816–1825

    Article  PubMed  CAS  Google Scholar 

  37. Eirin A, Ebrahimi B, Zhang X et al (2014) Mitochondrial protection restores renal function in swine atherosclerotic renovascular disease. Cardiovasc Res 103:461–472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Warner GM, Cheng J, Knudsen BE et al (2012) Genetic deficiency of Smad3 protects the kidneys from atrophy and interstitial fibrosis in 2K1C hypertension. Am J Physiol Renal Physiol 302:F1455–F1464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Gennisson JL, Grenier N, Combe C et al (2012) Supersonic shear wave elastography of in vivo pig kidney: influence of blood pressure, urinary pressure and tissue anisotropy. Ultrasound Med Biol 38:1559–1567

    Article  PubMed  Google Scholar 

  40. Manotham K, Tanaka T, Matsumoto M et al (2004) Evidence of tubular hypoxia in the early phase in the remnant kidney model. J Am Soc Nephrol 15:1277–1288

    Article  PubMed  Google Scholar 

  41. Yin M, Talwalkar JA, Glaser KJ et al (2007) Assessment of hepatic fibrosis with magnetic resonance elastography. Clin Gastroenterol Hepatol 5(1207–1213):e1202

    Google Scholar 

  42. Huwart L, Peeters F, Sinkus R et al (2006) Liver fibrosis: non-invasive assessment with MR elastography. NMR Biomed 19:173–179

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was partly supported by NIH grants numbers HL123160, DK73608, DK104273, HL121561, C06-RR018898. We are grateful to Medispec® LTD, Gaithersburg, MD, for generously allowing the use of the SW machine. The machine sponsor was not involved in data collection or analysis.

Author information

Authors and Affiliations

Authors

Contributions

ZX Protocol, data collection, data analysis; ZX Data collection; FC Data collection/data analysis; JK Data analysis; BT Data analysis; LA Protocol; LLO Protocol/project development

Corresponding author

Correspondence to Lilach Orly Lerman.

Ethics declarations

Conflict of interest

Authors have no conflict of interests.

Ethical standards

All applicable international, national, and/or institutional guidelines for care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. This article does not contain any studies with human participants performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10334_2017_671_MOESM1_ESM.tiff

Top: Representative images and quantification of trichrome staining from contralateral medulla. SW ameliorated the increased medullary fibrosis in ARAS CLK. Bottom: Representative MRE images (yellow/red color indicates greater stiffness) from contralateral cortex and medulla (TIFF 2309 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhu, X., Ferguson, C.M. et al. Magnetic resonance elastography can monitor changes in medullary stiffness in response to treatment in the swine ischemic kidney. Magn Reson Mater Phy 31, 375–382 (2018). https://doi.org/10.1007/s10334-017-0671-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-017-0671-7

Keywords

Navigation