Skip to main content

2D and 3D texture analysis to differentiate brain metastases on MR images: proceed with caution



To find structural differences between brain metastases of lung and breast cancer, computing their heterogeneity parameters by means of both 2D and 3D texture analysis (TA).

Materials and methods

Patients with 58 brain metastases from breast (26) and lung cancer (32) were examined by MR imaging. Brain lesions were manually delineated by 2D ROIs on the slices of contrast-enhanced T1-weighted (CET1) images, and local binary patterns (LBP) maps were created from each region. Histogram-based (minimum, maximum, mean, standard deviation, and variance), and co-occurrence matrix-based (contrast, correlation, energy, entropy, and homogeneity) 2D, weighted average of the 2D slices, and true 3D TA were obtained on the CET1 images and LBP maps.


For LBP maps and 2D TA contrast, correlation, energy, and homogeneity were identified as statistically different heterogeneity parameters (SDHPs) between lung and breast metastasis. The weighted 3D TA identified entropy as an additional SDHP. Only two texture indexes (TI) were significantly different with true 3D TA: entropy and energy. All these TIs discriminated between the two tumor types significantly by ROC analysis. For the CET1 images there was no SDHP at all by 3D TA.


Our results indicate that the used textural analysis methods may help with discriminating between brain metastases of different primary tumors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Nayak L, Quant Lee E, Wen PY (2012) Epidemiology of brain metastases. Curr Oncol Rep 14(1):48–54

    Article  PubMed  Google Scholar 

  2. Brastianos HC, Cahill DP, Brastianos PK (2015) Systemic therapy of brain metastases. Curr Neurol Neurosci Rep 15:518

    Article  PubMed  Google Scholar 

  3. Lee EK, Lee EJ, Kim MS, Kim MS, Park H-J, Park NH, Park S, Lee YS (2012) Intracranial metastases: spectrum of MR imaging findings. Acta Radiol 53(10):1173–1185

    Article  PubMed  Google Scholar 

  4. Kumar V, Abbas AK, Aster JC (2014) Robbins and cotran pathologic basis of disease, 9th edn. Elsevier, Philadelphia

    Google Scholar 

  5. Bekaert L, Emery E, Levallet G, Lechapt-Zalcman E (2017) Histopathologic diagnosis of brain metastases: current trends in management and future considerations. Brain Tumor Pathol 34(1):8–19

    Article  CAS  PubMed  Google Scholar 

  6. Fink KR, Fink JR (2013) Imaging of brain metastases. Surg Neurol Int 4(Suppl 4):S209–S219

    Article  PubMed  PubMed Central  Google Scholar 

  7. Balériaux D, Colosimo C, Ruscalleda J et al (2002) Diagnostic neuroradiology magnetic resonance imaging of metastatic disease to the brain with gadobenate dimeglumine. Neuroradiol 44(3):191–203

    Article  Google Scholar 

  8. Yuh WTC, Fisher DJ, Runge VM, Atlas SW, Harms SE, Maravilla KR, Mayr NA, Mollman JE, Price AC (1994) Phase III multicenter trial of high-dose gadoteridol in MR evaluation of brain metastases. Am J Neuroradiol 15(6):1037–1051

    CAS  PubMed  Google Scholar 

  9. Marusyk A, Polyak K (2010) Tumor heterogeneity: causes and consequences. Biochim Biophys Acta 1805(1):105–117

    CAS  PubMed  Google Scholar 

  10. Marusyk A, Almendro V, Polyak K (2012) Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer 12(5):323–334

    Article  CAS  PubMed  Google Scholar 

  11. Lerski RA, Smith MJ, Morley P, Barnett E, Mills PR, Watkinson G, MacSween RNM (1981) Discriminant analysis of ultrasonic texture data in diffuse alcoholic liver disease: 1 fatty liver and cirrhosis. Ultrason Imaging 3(2):164–172

    CAS  PubMed  Google Scholar 

  12. Haralick RM (1979) Statistical and structural approach to textures. Proc IEEE 67(5):786–804

    Article  Google Scholar 

  13. Ng TSC, Bading JR, Park R, Sohi H, Procissi D, Colcher D, Conti PS, Cherry SR, Raubitschek AA, Jacobs RE (2012) Quantitative, simultaneous PET/MRI for intratumoral imaging with an MRI-compatible PET scanner. J Nucl Med 53(7):1102–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Asselin M-C, O’connor JPB, Boellaard R, Thacker NA, Jackson A (2012) Quantifying heterogeneity in human tumours using MRI and PET. Eur J Cancer 48(4):447–455

    Article  PubMed  Google Scholar 

  15. Larroza A, Moratal D, Paredes-Sánchez A, Soria-Olivas E, Chust ML, Arribas LA, Arana E (2015) Support vector machine classification of brain metastasis and radiation necrosis based on texture analysis in MRI. J Magn Reson Imaging 42(5):1362–1368

    Article  PubMed  Google Scholar 

  16. Oppedal K, Eftestøl T, Engan K, Beyer MK, Aarsland D (2015) Classifying dementia using local binary patterns from different regions in magnetic resonance images. Int J Biomed Imag. doi:10.1155/2015/572567

    Google Scholar 

  17. Nanni L, Lumini A, Brahnam S (2010) Local binary patterns variants as texture descriptors for medical image analysis. Artif Intell Med 49(2):117–125

    Article  PubMed  Google Scholar 

  18. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  Google Scholar 

  19. Guo ZH, Zhang L, Zhang D (2010) Rotation invariant texture classification using LBP variance (LBPV) with global matching. Pattern Recognit 43(3):706–719

    Article  Google Scholar 

  20. Mouthuy N, Cosnard G, Abarca-Quinones J, Michoux N (2012) Multiparametric magnetic resonance imaging to differentiate high-grade gliomas and brain metastases. J Neuroradiol 39(5):301–307

    Article  PubMed  Google Scholar 

  21. Chernov MF, Hayashi M, Izawa M, Ono Y, Hori T (2006) Proton magnetic resonance spectroscopy (MRS) of metastatic brain tumors: variations of metabolic profile. Int J Clin Oncol 11(5):375–384

    Article  PubMed  Google Scholar 

  22. Orlhac F, Soussan M, Chouahnia K, Martinod E, Buvat I (2015) 18F-FDG PET-derived textural indices reflect tissue-specific uptake pattern in non-small cell lung cancer. PLoS One. doi:10.1371/journal.pone.0145063

    PubMed  PubMed Central  Google Scholar 

  23. Mahmoud-Ghoneim D, Alkaabi MK, De Certaines JD, Goettsche F-M (2008) The impact of image dynamic range on texture classification of brain white matter. BMC Med Imaging 8:18

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fetit AE, Novak J, Peet AC, Arvanitis TN (2015) Three-dimensional textural features of conventional MRI improve diagnostic classification of childhood brain tumours. NMR Biomed 28(9):1174–1184

    Article  PubMed  Google Scholar 

  25. Depeursinge A, Foncubierta-Rodriguez A, Van De Ville D, Müller H (2014) Three-dimensional solid texture analysis in biomedical imaging: review and opportunities. Med Image Anal 18(1):176–196

    Article  PubMed  Google Scholar 

  26. Suoranta S, Holli-Helenius K, Koskenkorva P, Niskanen E, Könönen M, Äikiä M, Eskola H, Kälviäinen R, Vanninen R (2013) 3D Texture analysis reveals imperceptible MRI textural alterations in the thalamus and putamen in progressive myoclonic epilepsy type 1, EPM1. PLoS One. doi:10.1371/journal.pone.0069905

    PubMed  PubMed Central  Google Scholar 

  27. Allin Christe S, Vasantha Kumari B, Kandaswamy A (2012) Experimental study for 3D statistical property based intracranial brain tumor classification. J Sci Ind Res 71(1):36–44

    Google Scholar 

  28. Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO (2007) Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 26(2):375–385

    Article  PubMed  Google Scholar 

  29. Li Z, Mao Y, Li H, Yu G, Wan H, Li B (2016) Differentiating brain metastases from different pathological types of lung cancers using texture analysis of T1 postcontrast MR. Magn Reson Med 76(5):1410–1419

    Article  PubMed  Google Scholar 

  30. Ben Sassi O, Sellami L, Ben Slima M, Chtourou K, Ben Hamida A (2013) Improved spatial gray level dependence matrices for texture analysis. Int J Comput Sci Inf Technol 4(6):209

    Google Scholar 

  31. Carl P, Daniel L (2008) Matlab function—cooc3d.m, available at

  32. Ganeshan B, Miles KA, Young RC, Chatwin CR (2007) Hepatic entropy and uniformity: additional parameters that can potentially increase the effectiveness of contrast enhancement during abdominal CT. Clin Radiol 62(8):761–768

    Article  CAS  PubMed  Google Scholar 

  33. Wibmer A, Hricak H, Gondo T, Matsumoto K, Veeraraghavan H, Fehr D, Zheng J, Goldman D, Moskowitz C, Fine SW, Reuter VE, Eastham J, Sala E, Vargas HA (2015) Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores. Eur Radiol 25(10):2840–2850

    Article  PubMed  PubMed Central  Google Scholar 

  34. Molina D, Pérez-Beteta J, Martínez-González A, Martino J, Velásquez C, Arana E, Pérez-García VM (2016) Influence of gray level and space discretization on brain tumor heterogeneity measures obtained from magnetic resonance images. Comput Biol Med 78:49–57

    Article  PubMed  Google Scholar 

  35. Yang D, Rao G, Martinez J, Veeraraghavan A, Rao A (2015) Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma. Med Phys 42(11):6725–6735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sikio M, Holli-Helenius KK, Ryymin P, Dastida P, Eskola H, Harrison L (2015) The effect of region of interest size on textural parameters: 9th International Symposium on Image and Signal Processing and Analysis (2015) IEEE, pp:149–153

  37. Brooks FJ, Grigsby PW (2014) The effect of small tumor volumes on studies of intratumoral heterogeneity of tracer uptake. J Nucl Med 55(1):37–42

    Article  CAS  PubMed  Google Scholar 

Download references


This work was supported in part by the Spanish Ministerio de Economía y Competitividad (MINECO) and FEDER funds under Grant BFU2015-64380-C2-2-R, by the “Richter Gedeon Talentum Alapítvány” and by the Campus Hungary Mobility Program. Andrés Larroza was funded by the Spanish Ministerio de Educación, Cultura y Deporte (MECD) under Grant FPU12/01140. The authors also thank to the continuous help of Dr. Joaquin Gavila from Fundación IVO.

Author information

Authors and Affiliations



Protocol/project development: David Moratal, Estanislao Arana, Monika Béresová. Data collection or management: David Moratal, Estanislao Arana, László Balkay. Andrés Larroza, Monika Béresová. Data analysis: David Moratal, Estanislao Arana, Balkay László, József Varga, Monika Béresová.

Corresponding author

Correspondence to Monika Béresová.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

All exams came from individuals who gave informed consent at admission for research and follow-up, in accordance with Institutional Board Review (IBR) approval.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Béresová, M., Larroza, A., Arana, E. et al. 2D and 3D texture analysis to differentiate brain metastases on MR images: proceed with caution. Magn Reson Mater Phy 31, 285–294 (2018).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Computer-assisted
  • Image processing
  • Texture analysis
  • Magnetic resonance imaging
  • Brain neoplasms
  • Metastasis
  • Breast cancer
  • Lung cancer