Improving fMRI in signal drop-out regions at 7 T by using tailored radio-frequency pulses: application to the ventral occipito-temporal cortex

Abstract

Objective

Signal drop-off occurs in echo-planar imaging in inferior brain areas due to field gradients from susceptibility differences between air and tissue. Tailored-RF pulses based on a hyperbolic secant (HS) have been shown to partially recover signal at 3 T, but have not been tested at higher fields.

Materials and methods

The aim of this study was to compare the performance of an optimized tailored-RF gradient-echo echo-planar imaging (TRF GRE-EPI) sequence with standard GRE-EPI at 7 T, in a passive viewing of faces or objects fMRI paradigm in healthy subjects.

Results

Increased temporal-SNR (tSNR) was observed in the middle and inferior temporal lobes and orbitofrontal cortex of all subjects scanned, but elsewhere tSNR decreased relative to the standard acquisition. In the TRF GRE-EPI, increased functional signal was observed in the fusiform, lateral occipital cortex, and occipital pole, regions known to be part of the visual pathway involved in face-object perception.

Conclusion

This work highlights the potential of TRF approaches at 7 T. Paired with a reversed-gradient distortion correction to compensate for in-plane susceptibility gradients, it provides an improved acquisition strategy for future neurocognitive studies at ultra-high field imaging in areas suffering from static magnetic field inhomogeneities.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Mansfield P (1997) Multi-planar image formation using NMR spin echoes. J Phys C: Solid State Phys 10:L55–L58

    Article  Google Scholar 

  3. 3.

    Jezzard P, Clare S (1999) Sources of distortion in functional MRI data. Hum Brain Mapp 8(2–3):80–85

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Jezzard P (2012) Correction of geometric distortion in fMRI data. NeuroImage 62:648–651

    Article  PubMed  Google Scholar 

  5. 5.

    Ojemann JG, Akbudak E, Snyder AZ, McKinstry RC, Raichle ME, Conturo TE (1997) Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts. NeuroImage 6:156–167

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Jesmanowicz A, Biswal BB, Hyde JS (1999) Reduction in GR-EPI intravoxel dephasing using thin slices and short TE. In: Proceedings of the ISMRM scientific meeting, Philadelphia, p 1619

  7. 7.

    Bellgowan PS, Bandettini PA, van Gelderen P, Martin A, Bodurka J (2006) Improved BOLD detection in the medial temporal region using parallel imaging and voxel volume reduction. NeuroImage 29(4):1244–1251

    Article  PubMed  Google Scholar 

  8. 8.

    Robinson SD, Pripfl J, Bauer H, Moser E (2008) The impact of EPI voxel size on SNR and BOLD sensitivity in the anterior medio-temporal lobe: a comparative group study of deactivation of the default mode. Magn Reson Mater Phy 21(4):279–290

    CAS  Article  Google Scholar 

  9. 9.

    Deichmann R, Gottfried JA, Hutton C, Turner R (2003) Optimized EPI for fMRI studies of the orbitofrontal cortex. NeuroImage 19(2):430–441

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Frahm J, Klaus-Dietmar M, Wolfgang H (1995) The effects of intravoxel dephasing and incomplete slice refocusing on susceptibility contrast in gradient-echo MRI. J Magn Reson 109(2):234–237

    CAS  Article  Google Scholar 

  11. 11.

    Constable RT (1995) Functional MR imaging using gradient-echo echo-planar imaging in the presence of large static field inhomogeneities. J Magn Reson Imaging 5(6):746–752

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Constable RT, Carpentier A, Pugh K, Westerveld M, Oszunar Y, Spencer DD (2000) Investigation of the human hippocampal formation using a randomized event-related paradigm and z-shimmed functional MRI. NeuroImage 12(1):55–62

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Constable RT, Spencer DD (1999) Composite image formation in z-shimmed functional MR imaging. Magn Reson Med 42:110–117

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Cordes D, Turski PA, Sorenson JA (2000) Compensation of susceptibility-induced signal loss in echo-planar imaging for functional applications. Magn Reson Imaging 18(9):1055–1068

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Weiskopf N, Hutton C, Josephs O, Deichmann R (2006) Optimal EPI parameters for reduction of susceptibility-induced BOLD sensitivity losses: a whole-brain analysis at 3 T and 1.5 T. NeuroImage 33(2):493–504

    Article  PubMed  Google Scholar 

  16. 16.

    Cho ZH, Ro YM (1992) Reduction of susceptibility artifact in gradient-echo imaging. Magn Reson Med 23:193–200

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Chung JY, Yoon HW, Kim YB, Park HW, Cho ZH (2009) Susceptibility compensated fMRI study using a tailored RF echo planar imaging sequence. J Magn Reson Imaging 29(1):221–228

    Article  PubMed  Google Scholar 

  18. 18.

    Wastling S, Barker GJ (2014) Designing hyperbolic secant excitation pulses to reduce signal dropout in gradient-echo echo-planar imaging. Mag Reson Med 74(3):661–672

    Article  Google Scholar 

  19. 19.

    Triantafyllou C, Hoge RD, Krueger G, Wiggins CJ, Potthast A, Wiggins GC, Wald LL (2005) Comparison of physiological noise at 1.5, 3 and 7 T and optimization of fMRI acquisition parameters. NeuroImage 26(1):243–250

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    van der Zwaag W, Francis S, Head K, Peters A, Gowland P, Morris P, Bowtell R (2009) fMRI at 1.5, 3 and 7 T: characterising BOLD signal changes. NeuroImage 47(4):1425–1434

    Article  PubMed  Google Scholar 

  21. 21.

    Beisteiner R, Robinson S, Wurnig M, Hilbert M, Merksa K, Rath J et al (2011) Clinical fMRI: evidence for a 7 T benefit over 3T. NeuroImage 57(3):1015–1021

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Rua C, Costagli M, Symms MR, Biagi L, Donatelli G, Cosottini M, Del Guerra A, Tosetti M (2017) Characterization of high-resolution gradient echo and spin echo EPI for fMRI in the human visual cortex at 7T. Magn Reson Imaging 40:98–108

    Article  PubMed  Google Scholar 

  23. 23.

    Robitaille PM, Berliner L (2007) Ultra high field magnetic resonance imaging, vol 26. Springer US, New York

    Google Scholar 

  24. 24.

    Farzaneh F, Riederer SJ, Pelc NJ (1990) Analysis of T2 limitations and off-resonance effects on spatial resolution and artifacts in echo-planar imaging. Magn Reson Med 14(1):123–139

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Moser E, Stahlberg F, Ladd ME, Trattnig S (2012) 7-T MR—from research to clinical applications? NMR Biomed 25(5):695–716

    Article  PubMed  Google Scholar 

  26. 26.

    Rua C, Wastling SJ, Costagli M, Biagi L, Symms MR, Del Guerra A, Cosottini M, Tosetti M, Barker GJ (2015) Demonstration of recovery of signal loss at 7T in gradient echo EPI using tailored-RF pulses. In: Proceedings of the ISMRM scientific meeting, Toronto, p 3917

  27. 27.

    De Renzi E, Perani D, Carlesimo GA, Silveri MC, Fazio F (1994) Prosopagnosia can be associated with damage confined to the right hemisphere—an MRI and PET study and a review of the literature. Neuropsychol 32:893–902

    Article  Google Scholar 

  28. 28.

    Puce A, Allison T, Asgari M, Gore JC, McCarthy G (1996) Differential sensitivity of human visual cortex to faces, letterings, and textures: a functional magnetic resonance imaging study. J Neurosci 16:5205–5215

    CAS  PubMed  Google Scholar 

  29. 29.

    Kanwisher N, McDermott J, Chun MM (1997) The Fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17(11):4302–4311

    CAS  PubMed  Google Scholar 

  30. 30.

    Haxby JV, Hoffman EA, Gobbini MI (2000) The distributed human neural system for face perception. Trends Neurosci 4(6):223–233

    CAS  Article  Google Scholar 

  31. 31.

    Rossion B, Caldara R, Seghier M, Schuller A-M, Lazeyras F, Mayer E (2003) A network of occipito-temporal face-sensitive areas besides the right middle fusiform gyrus is necessary for normal face processing. Brain 126:2381–2395

    Article  PubMed  Google Scholar 

  32. 32.

    Pitcher D, Walsh V, Duchaine B (2011) The role of the occipital face area in the cortical face perception network. Exp Brain Res 209:481–493

    Article  PubMed  Google Scholar 

  33. 33.

    Grill-Spector K, Kushnir T, Edelman S, Avidan G, Itzchak Y, Malach R (1999) Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24(1):187–203

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Grill-Spector K, Kanwisher N (2005) Visual Recognition: as soon as you know it is there, you know what it is. Psychol Sci 16(2):152–160

    Article  PubMed  Google Scholar 

  35. 35.

    Kourtzi Z, Kanwisher N (2001) Representation of perceived object shape by the human lateral occipital complex. Science 293(5534):1506–1509

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Wright P, Mougin O, Totman J, Peters A, Brookes M, Coxon R, Morris P, Clemence M, Francis S, Bowtell R, Gowland P (2008) Water proton T1 measurements in brain tissue at 7, 3, and 1.5 T using IR-EPI, IR-TSE, and MPRAGE: results and optimization. Magn Reson Mater Phy 21:121–130

    CAS  Article  Google Scholar 

  37. 37.

    Yacoub E, Duong TQ, De Moortele V, Lindquist M, Adriany G, Kim SG, Uğurbil K, Hu X (2003) Spin-echo fMRI in humans using high spatial resolutions and high magnetic fields. Magn Reson Med 49(4):655–664

    Article  PubMed  Google Scholar 

  38. 38.

    Jenkinson M, Bannister P, Brady JM, Smith SM (2002) Improved optimisation for the Robust and accurate linear registration and motion correction of brain images. NeuroImage 17(2):825–841

    Article  PubMed  Google Scholar 

  39. 39.

    Sergent J, Ohta S, Macdonald B (1992) Functional neuroanatomy of face and object processing—a positron emission tomography study. Brain 115:15–36

    Article  PubMed  Google Scholar 

  40. 40.

    Gauthier I, Tarr MJ, Moylan J, Skudlarski P, Gore JC, Anderson AW (2000) The fusiform “face area” is part of a network that processes faces at the individual level. J Cogn Neurosci 12(3):495–504

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Çukur T, Huth AG, Nishimoto S, Gallant JL (2013) Functional subdomains within FFA. J Neurosci 33:16748–16766

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Rajimehr R, Young JC, Tootell RB (2009) An anterior temporal face patch in human cortex predicted my macaque maps. Proc Nat Acad Sci USA 106:1995–2000

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, Gannister PR, De Luca M et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23(S1):208–219

    Article  Google Scholar 

  44. 44.

    Worsley KJ (2001) Statistical analysis of activation images. In: Matthews PM, Smith SM, Jezzard P (eds) Functional MRI: an introduction to methods. Oxford University Press, Oxford, pp 251–270

    Google Scholar 

  45. 45.

    Andersson JLR, Skare S, Ashburner J (2003) How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage 20:870–888

    Article  PubMed  Google Scholar 

  46. 46.

    Greve DN, Fischl B (2009) Accurate and robust brain image alignment using boundary-based registration. NeuroImage 48(1):63–72

    Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Human BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31:968–980

    Article  PubMed  Google Scholar 

  48. 48.

    Kriegeskorte N, Formisano E, Sorger B, Goebel R (2007) Individual faces elicit distinct response patterns in human anterior temporal cortex. Proc Natl Acad Sci USA 104(51):20600–20605

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Yang H, Susilo T, Duchaine B (2014) The anterior temporal face area contains invariant representations of face identity that can persist despite the loss of right FFA and OFA. Cereb Cortex 26(3):1096–1107

    Article  PubMed  Google Scholar 

  50. 50.

    Nasr S, Tootell RBH (2012) Role of fusiform and anterior temporal cortical areas in facial recognition. NeuroImage 63(3):1743–1753

    Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Uddin LQ, Kaplan JT, Molnar-Szakacs I, Zaidel E, Iacoboni M (2005) Self-face recognition activates a frontoparietal “mirror” network in the right hemisphere: an event-related fMRI study. NeuroImage 25:926–935

    Article  PubMed  Google Scholar 

  52. 52.

    Robert Powell HW, Koepp MJ, Richardson MP, Symms MR, Thompson PJ, Duncan JS (2004) The application of functional MRI of memory in temporal lobe epilepsy: a clinical review. Epilepsia 45(7):855–863

    Article  Google Scholar 

  53. 53.

    Benke T, Köylü B, Visani P, Karner E, Brenneis C, Bartha L et al (2006) Language lateralization in temporal lobe epilepsy: a comparison between fMRI and the Wada Test. Epilepsia 47(8):1308–1319

    Article  PubMed  Google Scholar 

  54. 54.

    Devlin JT, Russell RP, Davis MH, Price CJ, Wilson J, Moss HE, Matthews PM, Tyler LK (2000) Susceptibility induced loss of signal: comparing PET and fMRI on a semantic task. NeuroImage 11:589–600

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Carr VA, Rissman J, Wagner AD (2010) Imaging the human medial temporal lobe with high-resolution fMRI. Neuron 65(3):298–308

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Bonelli SB, Powell RH, Yogarajah M, Samson RS, Symms MR, Thompson PJ, Koepp MJ, Duncan JS (2010) Imaging memory in temporal lobe epilepsy: predicting the effects of temporal lobe resection. Brain 133(4):1186–1199

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Initial Training Network, HiMR, funded by the FP7 Marie Curie Actions of the European Commission (FP7-PEOPLE-2012-ITN-316716).

Author information

Affiliations

Authors

Contributions

CR Project development, data collection and data analysis. SJW Project development and data collection. MC Project development, data collection and data analysis. MRS Project development, data collection and data analysis. LB Project development and data collection. MC Project development and data management. ADG Project development. MT Project development and data management. GJB Project development and data management.

Corresponding author

Correspondence to Mauro Costagli.

Ethics declarations

Funding

CR was supported by the Initial Training Network, HiMR, funded by the FP7 Marie Curie Actions of the European Commission (FP7-PEOPLE-2012-ITN-316716).

Conflict of interest

MRS is employed by General Electric Healthcare. GJB receives honoraria for teaching from General Electric Healthcare, who also part fund a PhD studentship. GJB acts as a consultant for IXICO.

Human rights

All procedures involving human participants were in accordance with the ethical standards of the competent ethics committee and with the 1964 Helsinki declaration and its later amendments.

Informed consent

Written informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 289 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rua, C., Wastling, S.J., Costagli, M. et al. Improving fMRI in signal drop-out regions at 7 T by using tailored radio-frequency pulses: application to the ventral occipito-temporal cortex. Magn Reson Mater Phy 31, 257–267 (2018). https://doi.org/10.1007/s10334-017-0652-x

Download citation

Keywords

  • Functional MRI
  • Ultra high field
  • Tailored radio-frequency pulse
  • Signal drop-out recovery