Advertisement

Temperature dependence of 1H NMR chemical shifts and its influence on estimated metabolite concentrations

  • Felizitas C. Wermter
  • Nico Mitschke
  • Christian Bock
  • Wolfgang Dreher
Research Article

Abstract

Objectives

Temperature dependent chemical shifts of important brain metabolites measured by localised 1H MRS were investigated to test how the use of incorrect prior knowledge on chemical shifts impairs the quantification of metabolite concentrations.

Materials and methods

Phantom measurements on solutions containing 11 metabolites were performed on a 7 T scanner between 1 and 43 °C. The temperature dependence of the chemical shift differences was fitted by a linear model. Spectra were simulated for different temperatures and analysed by the AQSES program (jMRUI 5.2) using model functions with chemical shift values for 37 °C.

Results

Large differences in the temperature dependence of the chemical shift differences were determined with a maximum slope of about ±7.5 × 10−4 ppm/K. For 32–40 °C, only minor quantification errors resulted from using incorrect chemical shifts, with the exception of Cr and PCr. For 1–10 °C considerable quantification errors occurred if the temperature dependence of the chemical shifts was neglected.

Conclusion

If 1H MRS measurements are not performed at 37 °C, for which the published chemical shift values have been determined, the temperature dependence of chemical shifts should be considered to avoid systematic quantification errors, particularly for measurements on animal models at lower temperatures.

Keywords

NMR spectroscopy Spectrum analysis Brain metabolites Polar organisms 

Abbreviations

NAA

N-acetylaspartate

Ala

Alanine

GABA

γ-Aminobutyric acid

Asp

Aspartate

AQSES

Automated quantitation of short echo time MRS spectra

CEST

Chemical exchange saturation transfer

Cr

Creatine

DSS

2,2-Dimethyl-2-silapentane-5-sulfonate

FASTMAP

Fast automatic shimming technique by mapping along projections

Gln

Glutamine

Glu

Glutamate

Lac

Lactate

NMR

Nuclear magnetic resonance

m-Ins

myo-inositol

MRS

Magnetic resonance spectroscopy

NA

Number of accumulation

PCr

Phosphocreatine

PRESS

Point resolved spectroscopy sequence

RF

Radio frequency

SW

Spectral width

T2

Transversal relaxation time constant

Tau

Taurine

TE

Echo time

tCr

Total creatine

TMS

Tetramethylsilane

TR

Repetition time

VAPOR

Variable power and optimised relaxation delays

Notes

Acknowledgements

We thank Dr. Peter Erhard for helpful comments on the manuscript. This work was supported by the Deutsche Forschungsgemeinschaft (DFG) in the framework of the priority programme ‘Antarctic Research with comparative investigations in Arctic ice areas’ (SPP 1158) by grants DR298/13-1 and BO2467/4-1.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical approval

The manuscript does not contain animal or clinical studies, patient or volunteer data.

Supplementary material

10334_2017_642_MOESM1_ESM.docx (2.9 mb)
Supplementary material 1 (DOCX 2949 kb)

References

  1. 1.
    Howe FA, Maxwell RJ, Saunders DE, Brown MM, Griffiths JR (1993) Proton spectroscopy in vivo. Magn Reson Q 9:31–59PubMedGoogle Scholar
  2. 2.
    Ross B, Michaelis T (1994) Clinical applications of magnetic resonance spectroscopy. Magn Reson Q 10:191–247PubMedGoogle Scholar
  3. 3.
    Tkáč I, Starcuk Z, Choi IY, Gruetter R (1999) In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time. Magn Reson Med 41:649–656CrossRefPubMedGoogle Scholar
  4. 4.
    Pfeuffer J, Tkáč I, Provencher SW, Gruetter R (1999) Toward an in vivo neurochemical profile: quantification of 18 metabolites in short-echo-time 1H NMR spectra of the rat brain. J Magn Reson 141:104–120CrossRefPubMedGoogle Scholar
  5. 5.
    Mlynárik V, Cudalbu C, Xin L, Gruetter R (2008) 1H NMR spectroscopy of rat brain in vivo at 14.1Tesla: improvements in quantification of the neurochemical profile. J Magn Reson 194:163–168CrossRefPubMedGoogle Scholar
  6. 6.
    Tkáč I, Oz G, Adriany G, Uğurbil K, Gruetter R (2009) In vivo 1H NMR spectroscopy of the human brain at high magnetic fields: metabolite quantification at 4T vs. 7T. Magn Reson Med 62:868–879CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Marjańska M, Auerbach EJ, Valabrègue R, Van de Moortele PF, Adriany G, Garwood M (2012) Localized 1H NMR spectroscopy in different regions of human brain in vivo at 7 T: T2 relaxation times and concentrations of cerebral metabolites. NMR Biomed 25:332–339CrossRefPubMedGoogle Scholar
  8. 8.
    Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679CrossRefPubMedGoogle Scholar
  9. 9.
    Ratiney H, Coenradie Y, Cavassila S, van Ormondt D, Graveron-Demilly D (2004) Time-domain quantitation of 1H short echo-time signals: background accommodation. Magn Reson Mater Phy 16:284–296CrossRefGoogle Scholar
  10. 10.
    Ratiney H, Sdika M, Coenradie Y, Cavassila S, van Ormondt D, Graveron-Demilly D (2005) Time-domain semi-parametric estimation based on a metabolite basis set. NMR Biomed 18:1–13CrossRefPubMedGoogle Scholar
  11. 11.
    Poullet JB, Sima DM, Simonetti AW, De Neuter B, Vanhamme L, Lemmerling P, Van Huffel S (2007) An automated quantitation of short echo time MRS spectra in an open source software environment: AQSES. NMR Biomed 20:493–504CrossRefPubMedGoogle Scholar
  12. 12.
    Govindaraju V, Young K, Maudsley AA (2000) Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed 13:129–153CrossRefPubMedGoogle Scholar
  13. 13.
    Govind V, Young K, Maudsley AA (2015) Corrigendum: proton NMR chemical shifts and coupling constants for brain metabolites. Govindaraju V, Young K, Maudsley AA, NMR Biomed. 2000; 13: 129–153. NMR Biomed 28:923–924CrossRefPubMedGoogle Scholar
  14. 14.
    Deelchand DK, Van de Moortele PF, Adriany G, Iltis I, Andersen P, Strupp JP, Vaughan JT, Uğurbil K, Henry PG (2010) In vivo 1H NMR spectroscopy of the human brain at 9.4 T: initial results. J Magn Reson 206:74–80CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hong ST, Balla DZ, Pohmann R (2011) Determination of regional variations and reproducibility in in vivo 1H NMR spectroscopy of the rat brain at 16.4 T. Magn Reson Med 66:11–17CrossRefPubMedGoogle Scholar
  16. 16.
    Duarte JM, Lei H, Mlynárik V, Gruetter R (2012) The neurochemical profile quantified by in vivo 1H NMR spectroscopy. Neuroimage 61:342–362CrossRefPubMedGoogle Scholar
  17. 17.
    Hong ST, Pohmann R (2013) Quantification issues of in vivo 1H NMR spectroscopy of the rat brain investigated at 16.4 T. NMR Biomed 26:74–82CrossRefPubMedGoogle Scholar
  18. 18.
    Chadzynski GL, Pohmann R, Shajan G, Kolb R, Bisdas S, Klose U, Scheffler K (2015) In vivo proton magnetic resonance spectroscopic imaging of the healthy human brain at 9.4 T: initial experience. Magn Reson Mater Phy A 28:239–249CrossRefGoogle Scholar
  19. 19.
    Xin L, Tkáč I (2016) A practical guide to in vivo proton magnetic resonance spectroscopy at high magnetic fields. Anal Biochem. doi: 10.1016/j.ab.2016.10.019 Google Scholar
  20. 20.
    Cai K, Singh A, Poptani H, Li W, Yang S, Lu Y, Hariharan H, Zhou XJ, Reddy R (2015) CEST signal at 2 ppm (CEST@2 ppm) from Z-spectral fitting correlates with creatine distribution in brain tumor. NMR Biomed 28:1–8PubMedGoogle Scholar
  21. 21.
    Kogan F, Haris M, Singh A, Cai K, Debrosse C, Nanga RP, Hariharan H, Reddy R (2014) Method for high-resolution imaging of creatine in vivo using chemical exchange saturation transfer. Magn Reson Med 71:164–172CrossRefPubMedGoogle Scholar
  22. 22.
    van Zijl PC, Yadav NN (2011) Chemical exchange saturation transfer (CEST): what is in a name and what isn’t? Magn Reson Med 65:927–948CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Zaiss M, Bachert P (2013) Chemical exchange saturation transfer (CEST) and MR Z-spectroscopy in vivo: a review of theoretical approaches and methods. Phys Med Biol 58:R221–R269CrossRefPubMedGoogle Scholar
  24. 24.
    Kiyatkin EA, Brown PL (2005) Brain and body temperature homeostasis during sodium pentobarbital anesthesia with and without body warming in rats. Physiol Behav 84:563–570CrossRefPubMedGoogle Scholar
  25. 25.
    Van der Linden A, Van Meir V, Tindemans I, Verhoye M, Balthazart J (2004) Applications of manganese-enhanced magnetic resonance imaging (MEMRI) to image brain plasticity in song birds. NMR Biomed 17:602–612CrossRefPubMedGoogle Scholar
  26. 26.
    Stecyk JA, Bock C, Overgaard J, Wang T, Farrar AP, Pörtner HO (2009) Correlation of cardiac performance with cellular energetic components in the oxygen-deprived turtle heart. Am J Physiol Regul Integr Comp Physiol 297:R756–R768CrossRefPubMedGoogle Scholar
  27. 27.
    Van der Linden A, Verhoye M, Pörtner HO, Bock C (2004) The strengths of in vivo magnetic resonance imaging (MRI) to study environmental adaptational physiology in fish. Magn Reson Mater Phy 17:236–248CrossRefGoogle Scholar
  28. 28.
    Melzner F, Bock C, Pörtner HO (2006) Critical temperatures in the cephalopod Sepia officinalis investigated using in vivo 31P NMR spectroscopy. J Exp Biol 209:891–906CrossRefPubMedGoogle Scholar
  29. 29.
    Bock C, Sartoris FJ, Pörtner HO (2002) In vivo MR spectroscopy and MR imaging on non-anaesthetized marine fish: techniques and first results. Magn Reson Imaging 20:165–172CrossRefPubMedGoogle Scholar
  30. 30.
    Heinrich B (1974) Thermoregulation in endothermic insects. Science 185:747–756CrossRefPubMedGoogle Scholar
  31. 31.
    Henry PG, Russeth KP, Tkac I, Drewes LR, Andrews MT, Gruetter R (2007) Brain energy metabolism and neurotransmission at near-freezing temperatures: in vivo 1H MRS study of hibernating mammal. J Neurochem 101:1505–1515CrossRefPubMedGoogle Scholar
  32. 32.
    Arús C, Chang Y-C, Barany M (1985) N-acetylaspartate as an intrinsic thermometer for 1H NMR of brain slices. J Magn Reson (1969) 63:376–379CrossRefGoogle Scholar
  33. 33.
    Baxter NJ, Williamson MP (1997) Temperature dependence of 1H chemical shifts in proteins. J Biomol NMR 9:359–369CrossRefPubMedGoogle Scholar
  34. 34.
    Gottlieb HE, Kotlyar V, Nudelman A (1997) NMR chemical shifts of common laboratory solvents as trace impurities. J Org Chem 62:7512–7515CrossRefPubMedGoogle Scholar
  35. 35.
    Hoffman RE, Becker ED (2005) Temperature dependence of the 1H chemical shift of tetramethylsilane in chloroform, methanol, and dimethylsulfoxide. J Magn Reson 176:87–98CrossRefPubMedGoogle Scholar
  36. 36.
    Hoffman RE (2006) Standardization of chemical shifts of TMS and solvent signals in NMR solvents. 44:606–616Google Scholar
  37. 37.
    Gruetter R (1993) Automatic, localized in vivo adjustment of all first- and second-order shim coils. Magn Reson Med 29:804–811CrossRefPubMedGoogle Scholar
  38. 38.
    Bottomley PA (1987) Spatial localization in NMR spectroscopy in vivo. Ann N Y Acad Sci 508:333–348CrossRefPubMedGoogle Scholar
  39. 39.
    Shinnar M, Bolinger L, Leigh JS (1989) The synthesis of soft pulses with a specified frequency response. Magn Reson Med 12:88–92CrossRefPubMedGoogle Scholar
  40. 40.
    Mao J, Mareci TH, Andrew ER (1988) Experimental study of optimal selective 180° radiofrequency pulses. J Magn Reson (1969) 79:1–10CrossRefGoogle Scholar
  41. 41.
    Wishart DS, Bigam CG, Yao J, Abildgaard F, Dyson HJ, Oldfield E, Markley JL, Sykes BD (1995) 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR 6:135–140CrossRefPubMedGoogle Scholar
  42. 42.
    Smith SA, Levante TO, Meier BH, Ernst RR (1994) Computer simulations in magnetic resonance. An object-oriented programming approach. J Magn Reson A 106:75–105CrossRefGoogle Scholar
  43. 43.
    Vermathen P, Govindaraju V, Matson GB, Maudsley AA (1999) Detection of downfield 1H resonances in human brain using single voxel and SI methods. In: Proceeding of the 7th scientific meeting and exhibition, International Society for Magnetic Resonance in medicinie, Pennsylvania, p 1584Google Scholar
  44. 44.
    Stefan D, Cesare FD, Andrasescu A, Popa E, Lazariev A, Vescovo E, Strbak O, Williams S, Starcuk Z, Cabanas M, van Ormondt D, Graveron-Demilly D (2009) Quantitation of magnetic resonance spectroscopy signals: the jMRUI software package. Meas Sci Technol 20:104035CrossRefGoogle Scholar
  45. 45.
    Hong ST, Balla DZ, Shajan G, Choi C, Uğurbil K, Pohmann R (2011) Enhanced neurochemical profile of the rat brain using in vivo 1H NMR spectroscopy at 16.4 T. Magn Reson Med 65:28–34CrossRefPubMedGoogle Scholar
  46. 46.
    Kabli S, Spaink HP, De Groot HJ, Alia A (2009) In vivo metabolite profile of adult zebrafish brain obtained by high-resolution localized magnetic resonance spectroscopy. J Magn Reson Imaging 29:275–281CrossRefPubMedGoogle Scholar
  47. 47.
    Kugel H (1991) Improving the signal-to-noise ratio of NMR signals by reduction of inductive losses. J Magn Reson (1969) 91:179–185CrossRefGoogle Scholar
  48. 48.
    Cai K, Haris M, Singh A, Kogan F, Greenberg JH, Hariharan H, Detre JA, Reddy R (2012) Magnetic resonance imaging of glutamate. Nat Med 18:302–306CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Wermter FC, Bock C, Dreher W (2015) Investigating GluCEST and its specificity for pH mapping at low temperatures. NMR Biomed 28:1507–1517CrossRefPubMedGoogle Scholar

Copyright information

© ESMRMB 2017

Authors and Affiliations

  1. 1.Department of Chemistry, in vivo-MR GroupUniversity BremenBremenGermany
  2. 2.Integrative EcophysiologyAlfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchBremerhavenGermany

Personalised recommendations