Improved \(T_{2}^{*}\) determination in 23Na, 35Cl, and 17O MRI using iterative partial volume correction based on 1H MRI segmentation

  • Sebastian C. Niesporek
  • Reiner Umathum
  • Thomas M. Fiedler
  • Peter Bachert
  • Mark E. Ladd
  • Armin M. Nagel
Research Article



Functional parameters can be measured with the help of quantitative non-proton MRI where exact relaxometry parameters are needed. Investigation of \(T_{2}^{*}\) is often biased by strong partial volume (PV) effects. Hence, in this work a PV correction algorithm approach was evaluated that uses iteratively adapted \(T_{2}^{*}\)-values and high-resolution structural 1H data to determine transverse relaxation in non-proton MRI more accurately.

Materials and methods

Simulations, a phantom study and in vivo 23Na, 17O and 35Cl MRI measurements of five healthy volunteers were performed to evaluate the algorithm. \(T_{2}^{*}\) values of grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF) were obtained. Data were acquired at B 0  = 7T with nominal spatial resolutions of (4–7 mm)3 using a density-adapted radial sequence. The resulting transverse relaxation times were used for quantification of 17O data.


The conducted simulations and phantom study verified the correction performance of the algorithm. For in vivo measured \(T_{2}^{*}\) values, the correction of PV effects leads to an increase in CSF and to a decrease in GM/WM (23Na MRI: long/short GM, WM \(T_{2}^{*}\): 36.4 ± 3.1/5.4 ± 0.2, 23.3 ± 2.6/3.5 ± 0.1 ms; 35Cl MRI: 8.9 ± 1.4/1.0 ± 0.4, 5.9 ± 0.3/0.4 ± 0.1 ms; 17O MRI: 2.5 ± 0.1, 2.8 ± 0.1 ms). Iteratively corrected in vivo \(T_{2}^{*}\) values of the 17O study resulted in improved water content quantification.


The proposed iterative algorithm for PV correction leads to more accurate \(T_{2}^{*}\) values and, thus, can improve accuracy in quantitative non-proton MRI.


Non-proton MRI Iterative partial volume correction Ultra-high field MRI Non-proton \(T_{2}^{*}\) 



This work was funded in part by the National German Research Foundation (DFG; Grant number: NA736/2-1).

Authors’ contribution

Niesporek, Sebastian C.: data collection, data analysis, protocol/project development. Umathum, Reiner: data analysis. Fiedler, Thomas M.: data analysis. Bachert, Peter: data analysis. Ladd, Mark E.: data analysis. Nagel, Armin M.: data analysis, protocol/project development.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

10334_2017_623_MOESM1_ESM.tif (2.3 mb)
Supplementary material 1 (TIFF 2345 kb)
10334_2017_623_MOESM2_ESM.tif (4.8 mb)
Supplementary material 2 (TIFF 4866 kb)
10334_2017_623_MOESM3_ESM.tif (1.2 mb)
Supplementary material 3 (TIFF 1192 kb)
10334_2017_623_MOESM4_ESM.docx (28 kb)
Supplementary material 4 (DOCX 28 kb)


  1. 1.
    Nagel AM, Bock M, Hartmann C, Gerigk L, Neumann JO, Weber MA, Bendszus M, Radbruch A, Wick W, Schlemmer HP, Semmler W, Biller A (2011) The potential of relaxation-weighted sodium magnetic resonance imaging as demonstrated on brain tumors. Invest Radiol 46(9):539–547CrossRefPubMedGoogle Scholar
  2. 2.
    Thulborn KR, Davis D, Adams H, Gindin T, Zhou J (1999) Quantitative tissue sodium concentration mapping of the growth of focal cerebral tumors with sodium magnetic resonance imaging. Magn Reson Med 41(2):351–359CrossRefPubMedGoogle Scholar
  3. 3.
    Ouwerkerk R, Bleich KB, Gillen JS, Pomper MG, Bottomley PA (2003) Tissue sodium concentration in human brain tumors as measured with 23Na MR imaging. Radiology 227(2):529–537CrossRefPubMedGoogle Scholar
  4. 4.
    Inglese M, Madelin G, Oesingmann N, Babb JS, Wu W, Stoeckel B, Herbert J, Johnson G (2010) Brain tissue sodium concentration in multiple sclerosis: a sodium imaging study at 3 tesla. Brain 133(Pt 3):847–857CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Zaaraoui W, Konstandin S, Audoin B, Nagel AM, Rico A, Malikova I, Soulier E, Viout P, Confort-Gouny S, Cozzone PJ, Pelletier J, Schad LR, Ranjeva JP (2012) Distribution of brain sodium accumulation correlates with disability in multiple sclerosis: a cross-sectional 23Na MR imaging study. Radiology 264(3):859–867CrossRefPubMedGoogle Scholar
  6. 6.
    Hilal SK, Maudsley AA, Simon HE, Perman WH, Bonn J, Mawad ME, Silver AJ, Ganti SR, Sane P, Chien IC (1983) In vivo NMR imaging of tissue sodium in the intact cat before and after acute cerebral stroke. AJNR Am J Neuroradiol 4(3):245–249PubMedGoogle Scholar
  7. 7.
    Hussain MS, Stobbe RW, Bhagat YA, Emery D, Butcher KS, Manawadu D, Rizvi N, Maheshwari P, Scozzafava J, Shuaib A, Beaulieu C (2009) Sodium imaging intensity increases with time after human ischemic stroke. Ann Neurol 66(1):55–62CrossRefPubMedGoogle Scholar
  8. 8.
    Reetz K, Romanzetti S, Dogan I, Sass C, Werner CJ, Schiefer J, Schulz JB, Shah NJ (2012) Increased brain tissue sodium concentration in Huntington’s disease—a sodium imaging study at 4 T. Neuroimage 63(1):517–524CrossRefPubMedGoogle Scholar
  9. 9.
    Jentsch TJ, Stein V, Weinreich F, Zdebik AA (2002) Molecular structure and physiological function of chloride channels. Physiol Rev 82(2):503–568CrossRefPubMedGoogle Scholar
  10. 10.
    Habela CW, Ernest NJ, Swindall AF, Sontheimer H (2009) Chloride accumulation drives volume dynamics underlying cell proliferation and migration. J Neurophysiol 101(2):750–757CrossRefPubMedGoogle Scholar
  11. 11.
    Cuddapah VA, Sontheimer H (2011) Ion channels and transporters [corrected] in cancer. 2. Ion channels and the control of cancer cell migration. Am J Physiol Cell Physiol 301(3):C541–C549CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Boulenguez P, Liabeuf S, Bos R, Bras H, Jean-Xavier C, Brocard C, Stil A, Darbon P, Cattaert D, Delpire E, Marsala M, Vinay L (2010) Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury. Nat Med 16(3):302–307CrossRefPubMedGoogle Scholar
  13. 13.
    Nagel AM, Lehmann-Horn F, Weber MA, Jurkat-Rott K, Wolf MB, Radbruch A, Umathum R, Semmler W (2014) In vivo 35Cl MR imaging in humans: a feasibility study. Radiology 271(2):585–595CrossRefPubMedGoogle Scholar
  14. 14.
    Atkinson IC, Thulborn KR (2010) Feasibility of mapping the tissue mass corrected bioscale of cerebral metabolic rate of oxygen consumption using 17-oxygen and 23-sodium MR imaging in a human brain at 9.4 T. Neuroimage 51(2):723–733CrossRefPubMedGoogle Scholar
  15. 15.
    Hoffmann SH, Begovatz P, Nagel AM, Umathum R, Schommer K, Bachert P, Bock M (2011) A measurement setup for direct 17O MRI at 7 T. Magn Reson Med 66(4):1109–1115CrossRefPubMedGoogle Scholar
  16. 16.
    Miles KA, Williams RE (2008) Warburg revisited: imaging tumour blood flow and metabolism. Cancer Imaging 8:81–86CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Beal MF (1992) Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann Neurol 31(2):119–130CrossRefPubMedGoogle Scholar
  18. 18.
    Wong-Riley M, Antuono P, Ho KC, Egan R, Hevner R, Liebl W, Huang Z, Rachel R, Jones J (1997) Cytochrome oxidase in Alzheimer’s disease: biochemical, histochemical, and immunohistochemical analyses of the visual and other systems. Vision Res 37(24):3593–3608CrossRefPubMedGoogle Scholar
  19. 19.
    Maurer I, Zierz S, Moller HJ (2000) A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients. Neurobiol Aging 21(3):455–462CrossRefPubMedGoogle Scholar
  20. 20.
    Konstandin S, Nagel AM (2014) Measurement techniques for magnetic resonance imaging of fast relaxing nuclei. Magn Reson Mater Phy 27(1):5–19CrossRefGoogle Scholar
  21. 21.
    Rousset OG, Ma Y, Evans AC (1998) Correction for partial volume effects in PET: principle and validation. J Nucl Med 39(5):904–911PubMedGoogle Scholar
  22. 22.
    Hoffmann SH, Radbruch A, Bock M, Semmler W, Nagel AM (2014) Direct (17)O MRI with partial volume correction: first experiences in a glioblastoma patient. Magn Reson Mater Phy 27(6):579–587CrossRefGoogle Scholar
  23. 23.
    Niesporek SC, Hoffmann SH, Berger MC, Benkhedah N, Kujawa A, Bachert P, Nagel AM (2015) Partial volume correction for in vivo (23)Na-MRI data of the human brain. Neuroimage 112:353–363CrossRefPubMedGoogle Scholar
  24. 24.
    Fleysher L, Oesingmann N, Stoeckel B, Grossman RI, Inglese M (2009) Sodium long-component T(2)(*) mapping in human brain at 7 Tesla. Magn Reson Med 62(5):1338–1341CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Bartha R, Menon RS (2004) Long component time constant of 23Na T*2 relaxation in healthy human brain. Magn Reson Med 52(2):407–410CrossRefPubMedGoogle Scholar
  26. 26.
    Winkler SS, Thomasson DM, Sherwood K, Perman WH (1989) Regional T2 and sodium concentration estimates in the normal human brain by sodium-23 MR imaging at 1.5 T. J Comput Assist Tomogr 13(4):561–566CrossRefPubMedGoogle Scholar
  27. 27.
    Zhu XH, Merkle H, Kwag JH, Ugurbil K, Chen W (2001) 17O relaxation time and NMR sensitivity of cerebral water and their field dependence. Magn Reson Med 45(4):543–549CrossRefPubMedGoogle Scholar
  28. 28.
    Fiat D, Dolinsek J, Hankiewicz J, Dujovny M, Ausman J (1993) Determination of regional cerebral oxygen consumption in the human: 17O natural abundance cerebral magnetic resonance imaging and spectroscopy in a whole body system. Neurol Res 15(4):237–248CrossRefPubMedGoogle Scholar
  29. 29.
    Hoffmann SH, Nagel AM, Umathum R, Meise FM, Bock M (2011) In vivo relaxation parameters of oxygen-17 (17O). Proc Intl Soc Mag Reson Med 19:473Google Scholar
  30. 30.
    Nagel AM, Laun FB, Weber MA, Matthies C, Semmler W, Schad LR (2009) Sodium MRI using a density-adapted 3D radial acquisition technique. Magn Reson Med 62(6):1565–1573CrossRefPubMedGoogle Scholar
  31. 31.
    Vembu S (1961) Fourier transformation of N-dimensional radial delta function. Q J Math 12(47):165–168CrossRefGoogle Scholar
  32. 32.
    Atkinson IC, Lu A, Thulborn KR (2011) Clinically constrained optimization of flexTPI acquisition parameters for the tissue sodium concentration bioscale. Magn Reson Med 66(4):1089–1099CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Rahmer J, Bornert P, Groen J, Bos C (2006) Three-dimensional radial ultrashort echo-time imaging with T2 adapted sampling. Magn Reson Med 55(5):1075–1082CrossRefPubMedGoogle Scholar
  34. 34.
    Scheffler K, Hennig J (1998) Reduced circular field-of-view imaging. Magn Reson Med 40(3):474–480CrossRefPubMedGoogle Scholar
  35. 35.
    Yang XY, Sammet S, Schmalbrock P, Knopp MV (2010) Postprocessing correction for distortions in T-2* decay caused by quadratic Cross-Slice B-0 inhomogeneity. Magn Reson Med 63(5):1258–1268CrossRefPubMedGoogle Scholar
  36. 36.
    Jackson JI, Meyer CH, Nishimura DG, Macovski A (1991) Selection of a convolution function for Fourier inversion using gridding [computerised tomography application]. IEEE Trans Med Imaging 10(3):473–478CrossRefPubMedGoogle Scholar
  37. 37.
    Barger AV, Block WF, Toropov Y, Grist TM, Mistretta CA (2002) Time-resolved contrast-enhanced imaging with isotropic resolution and broad coverage using an undersampled 3D projection trajectory. Magn Reson Med 48(2):297–305CrossRefPubMedGoogle Scholar
  38. 38.
    Rooney WD, Springer CS Jr (1991) A comprehensive approach to the analysis and interpretation of the resonances of spins 3/2 from living systems. NMR Biomed 4(5):209–226CrossRefPubMedGoogle Scholar
  39. 39.
    Hubbard PS (1970) Nonexponential nuclear magnetic relaxation by quadrupole interactions. J Chem Phys 53(3):985–986CrossRefGoogle Scholar
  40. 40.
    Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17(2):825–841CrossRefPubMedGoogle Scholar
  41. 41.
    Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5(2):143–156CrossRefPubMedGoogle Scholar
  42. 42.
    Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20(1):45–57CrossRefPubMedGoogle Scholar
  43. 43.
    Nolden M, Zelzer S, Seitel A, Wald D, Muller M, Franz AM, Maleike D, Fangerau M, Baumhauer M, Maier-Hein L, Maier-Hein KH, Meinzer HP, Wolf I (2013) The Medical Imaging Interaction Toolkit: challenges and advances: 10 years of open-source development. Int J Comput Assist Radiol Surg 8(4):607–620CrossRefPubMedGoogle Scholar
  44. 44.
    Wolf I, Vetter M, Wegner I, Bottger T, Nolden M, Schobinger M, Hastenteufel M, Kunert T, Meinzer HP (2005) The medical imaging interaction toolkit. Med Image Anal 9(6):594–604CrossRefPubMedGoogle Scholar
  45. 45.
    Morrell GR (2008) A phase-sensitive method of flip angle mapping. Magn Reson Med 60(4):889–894CrossRefPubMedGoogle Scholar
  46. 46.
    Neeb H, Ermer V, Stocker T, Shah NJ (2008) Fast quantitative mapping of absolute water content with full brain coverage. Neuroimage 42(3):1094–1109CrossRefPubMedGoogle Scholar
  47. 47.
    Zhu XH, Chen W (2011) In vivo oxygen-17 NMR for imaging brain oxygen metabolism at high field. Prog Nucl Magn Reson Spectrosc 59(4):319–335CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Stobbe RW, Beaulieu C (2014) Exploring and enhancing relaxation-based sodium MRI contrast. Magn Reson Mater Phy 27(1):21–33CrossRefGoogle Scholar
  49. 49.
    Felgenhauer K (1974) Protein size and cerebrospinal fluid composition. Klinische Wochenschrift 52(24):1158–1164CrossRefPubMedGoogle Scholar
  50. 50.
    Niesporek SC, Hoffmann SH, Berger MC, Nagel AM (2015) In-vivo chlorine quantification with partial volume corrected 35Cl-MRI. In: Proceeding 23rd Annual Meeting of the International Society of Magnetic Resonance in Medicine (ISMRM)Google Scholar
  51. 51.
    Atkinson IC, Claiborne TC, Thulborn KR (2014) Feasibility of 39-potassium MR imaging of a human brain at 9.4 Tesla. Magn Reson Med 71(5):1819–1825CrossRefPubMedGoogle Scholar
  52. 52.
    Umathum R, Rosler MB, Nagel AM (2013) In vivo 39 K MR imaging of human muscle and brain. Radiology 269(2):569–576CrossRefPubMedGoogle Scholar
  53. 53.
    Greenman RL, Axel L, Ferrari VA, Lenkinski RE (2002) Fast imaging of phosphocreatine in the normal human myocardium using a three-dimensional RARE pulse sequence at 4 Tesla. J Magn Reson Imaging 15(4):467–472CrossRefPubMedGoogle Scholar
  54. 54.
    Greenman RL (2004) Quantification of the 31P metabolite concentration in human skeletal muscle from RARE image intensity. Magn Reson Med 52(5):1036–1042CrossRefPubMedGoogle Scholar
  55. 55.
    Rink K, Berger MC, Korzowski A, Breithaupt M, Biller A, Bachert P, Nagel AM (2015) Nuclear-Overhauser-enhanced MR imaging of (31)P-containing metabolites: multipoint-Dixon vs. frequency-selective excitation. Magn Reson Imaging 33(10):1281–1289CrossRefPubMedGoogle Scholar
  56. 56.
    Thulborn KR, du Boulay GH, Duchen LW, Radda G (1982) A 31P nuclear magnetic resonance in vivo study of cerebral ischaemia in the gerbil. J Cereb Blood Flow Metab 2(3):299–306CrossRefPubMedGoogle Scholar

Copyright information

© ESMRMB 2017

Authors and Affiliations

  • Sebastian C. Niesporek
    • 1
  • Reiner Umathum
    • 1
  • Thomas M. Fiedler
    • 1
  • Peter Bachert
    • 1
  • Mark E. Ladd
    • 1
  • Armin M. Nagel
    • 1
    • 2
  1. 1.Division of Medical Physics in RadiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
  2. 2.Institute of RadiologyUniversity Hospital ErlangenErlangenGermany

Personalised recommendations