Skip to main content
Log in

Quantitative effects of acquisition duration and temporal resolution on the measurement accuracy of prostate dynamic contrast-enhanced MRI data: a phantom study

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objectives

The aim of this study was to investigate the effect of the temporal resolution (T res) and acquisition duration (AD) on the measurement accuracy of contrast concentration–time curves (CTCs), and derived phenomenological and pharmacokinetic parameter values, in a dynamic contrast-enhanced MRI experiment using a novel phantom test device.

Materials and methods

‘Ground truth’ CTCs were established using a highly precise optical imaging system. These precisely known CTCs were produced in an anthropomorphic environment, which mimicked the male pelvic region, and presented to the MRI scanner for measurement. The T res was varied in the range [2–24.4 s] and the AD in the range [30–600 s], and the effects on the measurement accuracy were quantified.

Results

For wash-in parameter measurements, large underestimation errors (up to 40%) were found using T res values ≥16.3 s; however, the measured wash-out rate did not vary greatly across all T res values tested. Errors in derived K trans and v e values were below 14 and 12% for acquisitions with {T res ≤ 8.1 s, AD ≥ 360 s} and {T res ≤ 16.3 s, AD ≥ 360 s}, respectively, but increased dramatically outside these ranges.

Conclusions

Errors in measured wash-in, wash-out, K trans, and v e parameters were minimised using T res ≤ 8.1 s and AD ≥ 360 s, with large errors recorded outside of this range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Noworolski SM, Vigneron DB, Chen AP, Kurhanewicz J (2008) Dynamic contrast-enhanced MRI and MR diffusion imaging to distinguish between glandular and stromal prostatic tissues. Magn Reson Imaging 26:1071–1080

    Article  PubMed  PubMed Central  Google Scholar 

  2. Vos EK, Litjens GJ, Kobus T, Hambrock T, Hulsbergen-van de Kaa CA, Barentsz JO, Huisman HJ, Scheenen TW (2013) Assessment of prostate cancer aggressiveness using dynamic contrast-enhanced magnetic resonance imaging at 3 T. Eur Urol 64:448–455

    Article  PubMed  Google Scholar 

  3. Schlemmer HP, Merkle J, Grobholz R, Jaeger T, Michel MS, Werner A, Rabe J, van Kaick G (2004) Can pre-operative contrast-enhanced dynamic MR imaging for prostate cancer predict microvessel density in prostatectomy specimens? Eur Radiol 14:309–317

    Article  PubMed  Google Scholar 

  4. Futterer JJ, Heijmink SW, Scheenen TW, Veltman J, Huisman HJ, Vos P, Hulsbergen-Van de Kaa CA, Witjes JA, Krabbe PF, Heerschap A, Barentsz JO (2006) Prostate cancer localization with dynamic contrast-enhanced MR imaging and proton MR spectroscopic imaging. Radiology 241:449–458

    Article  PubMed  Google Scholar 

  5. Hara N, Okuizumi M, Koike H, Kawaguchi M, Bilim V (2005) Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a useful modality for the precise detection and staging of early prostate cancer. Prostate 62:140–147

    Article  PubMed  Google Scholar 

  6. Chen YJ, Chu WC, Pu YS, Chueh SC, Shun CT, Tseng WY (2012) Washout gradient in dynamic contrast-enhanced MRI is associated with tumor aggressiveness of prostate cancer. J Magn Reson Imaging 36:912–919

    Article  PubMed  Google Scholar 

  7. Sourbron SP, Buckley DL (2013) Classic models for dynamic contrast-enhanced MRI. NMR Biomed 26:1004–1027

    Article  PubMed  Google Scholar 

  8. Verma S, Turkbey B, Muradyan N, Rajesh A, Cornud F, Haider MA, Choyke PL, Harisinghani M (2012) Overview of dynamic contrast-enhanced MRI in prostate cancer diagnosis and management. AJR Am J Roentgenol 198:1277–1288

    Article  PubMed  Google Scholar 

  9. Aerts HJ, Jaspers K, Backes WH (2011) The precision of pharmacokinetic parameters in dynamic contrast-enhanced magnetic resonance imaging: the effect of sampling frequency and duration. Phys Med Biol 56:5665–5678

    Article  PubMed  Google Scholar 

  10. Ginsburg SB, Taimen P, Merisaari H, Vainio P, Bostrom PJ, Aronen HJ, Jambor I, Madabhushi A (2016) Patient-specific pharmacokinetic parameter estimation on dynamic contrast-enhanced MRI of prostate: preliminary evaluation of a novel AIF-free estimation method. J Magn Reson Imaging 44:1405–1414

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sullivan DC, Obuchowski NA, Kessler LG, Raunig DL, Gatsonis C, Huang EP, Kondratovich M, McShane LM, Reeves AP, Barboriak DP, Guimaraes AR, Wahl RL (2015) Metrology standards for quantitative imaging biomarkers. Radiology 277:813–825

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mehrabian H, Pang I, Chandrana C, Chopra R, Martel AL (2011) Automatic mask generation using independent component analysis in dynamic contrast enhanced-MRI. IEEE Int Symp Biomed Imaging From Nano Macro 1657–1661

  13. Rajan S, Herbertson L, Bernardo M, Choyke P (2014) A dialyzer-based flow system for validating dynamic contrast enhanced MR image acquisition. Magn Reson Med 72:41–48

    Article  CAS  PubMed  Google Scholar 

  14. Henderson E, Rutt BK, Lee TY (1998) Temporal sampling requirements for the tracer kinetics modeling of breast disease. Magn Reson Imaging 16:1057–1073

    Article  CAS  PubMed  Google Scholar 

  15. Othman AE, Falkner F, Martirosian P, Schraml C, Schwentner C, Nickel D, Nikolaou K, Notohamiprodjo M (2016) Optimized fast dynamic contrast-enhanced magnetic resonance imaging of the prostate: effect of sampling duration on pharmacokinetic parameters. Invest Radiol 51:106–112

    Article  CAS  PubMed  Google Scholar 

  16. Othman AE, Falkner F, Weiss J, Kruck S, Grimm R, Martirosian P, Nikolaou K, Notohamiprodjo M (2016) Effect of temporal resolution on diagnostic performance of dynamic contrast-enhanced magnetic resonance imaging of the prostate. Invest Radiol 51:290–296

    Article  PubMed  Google Scholar 

  17. Rosenkrantz AB, Geppert C, Grimm R, Block TK, Glielmi C, Feng L, Otazo R, Ream JM, Romolo MM, Taneja SS, Sodickson DK, Chandarana H (2015) Dynamic contrast-enhanced MRI of the prostate with high spatiotemporal resolution using compressed sensing, parallel imaging, and continuous golden-angle radial sampling: preliminary experience. J Magn Reson Imaging 41:1365–1373

    Article  PubMed  Google Scholar 

  18. Barrett T, Gill AB, Kataoka MY, Priest AN, Joubert I, McLean MA, Graves MJ, Stearn S, Lomas DJ, Griffiths JR, Neal D, Gnanapragasam VJ, Sala E (2012) DCE and DW MRI in monitoring response to androgen deprivation therapy in patients with prostate cancer: a feasibility study. Magn Reson Med 67:778–785

    Article  CAS  PubMed  Google Scholar 

  19. Haq NF, Kozlowski P, Jones EC, Chang SD, Goldenberg SL, Moradi M (2015) A data-driven approach to prostate cancer detection from dynamic contrast enhanced MRI. Comput Med Imaging Graph 41:37–45

    Article  PubMed  Google Scholar 

  20. Villers A, Puech P, Mouton D, Leroy X, Ballereau C, Lemaitre L (2006) Dynamic contrast enhanced, pelvic phased array magnetic resonance imaging of localized prostate cancer for predicting tumor volume: correlation with radical prostatectomy findings. J Urol 176:2432–2437

    Article  PubMed  Google Scholar 

  21. Knight SP, Browne JE, Meaney JF, Smith DS, Fagan AJ (2016) A novel anthropomorphic flow phantom for the quantitative evaluation of prostate DCE-MRI acquisition techniques. Phys Med Biol 61:7466–7483

    Article  CAS  PubMed  Google Scholar 

  22. Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, Larsson HB, Lee TY, Mayr NA, Parker GJ, Port RE, Taylor J, Weisskoff RM (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232

    Article  CAS  PubMed  Google Scholar 

  23. Parker GJ, Roberts C, Macdonald A, Buonaccorsi GA, Cheung S, Buckley DL, Jackson A, Watson Y, Davies K, Jayson GC (2006) Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magn Reson Med 56:993–1000

    Article  PubMed  Google Scholar 

  24. Sandler K, Patel M, Lynne C, Parekh DJ, Punnen S, Jorda M, Casillas J, Pollack A, Stoyanova R (2015) Multiparametric-MRI and targeted biopsies in the management of prostate cancer patients on active surveillance. Front Oncol 5:4

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lin LI (1989) A concordance correlation coefficient to evaluate reproducibility. Biometrics 45:255–268

    Article  CAS  PubMed  Google Scholar 

  26. Smith DS, Li X, Arlinghaus LR, Yankeelov TE, Welch EB (2015) DCEMRI.jl: a fast, validated, open source toolkit for dynamic contrast enhanced MRI analysis. PeerJ 3:e909

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO (2007) Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 26:375–385

    Article  PubMed  Google Scholar 

  28. Li X, Huang W, Rooney WD (2012) Signal-to-noise ratio, contrast-to-noise ratio and pharmacokinetic modeling considerations in dynamic contrast-enhanced magnetic resonance imaging. Magn Reson Imaging 30:1313–1322

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kim JK, Hong SS, Choi YJ, Park SH, Ahn H, Kim CS, Cho KS (2005) Wash-in rate on the basis of dynamic contrast-enhanced MRI: usefulness for prostate cancer detection and localization. J Magn Reson Imaging 22:639–646

    Article  CAS  PubMed  Google Scholar 

  30. Chen X, Salerno M, Yang Y, Epstein FH (2014) Motion-compensated compressed sensing for dynamic contrast-enhanced MRI using regional spatiotemporal sparsity and region tracking: block low-rank sparsity with motion-guidance (BLOSM). Magn Reson Med 72:1028–1038

    Article  PubMed  Google Scholar 

  31. Melbourne A, Hipwell J, Modat M, Mertzanidou T, Huisman H, Ourselin S, Hawkes DJ (2011) The effect of motion correction on pharmacokinetic parameter estimation in dynamic-contrast-enhanced MRI. Phys Med Biol 56:7693–7708

    Article  CAS  PubMed  Google Scholar 

  32. Stone AJ, Browne JE, Lennon B, Meaney JF, Fagan AJ (2012) Effect of motion on the ADC quantification accuracy of whole-body DWIBS. Magn Reson Mater Phy 25:263–266

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Irish Cancer Society Research Scholarship (supported by Movember) [grant number CRS13KNI]. The authors would also like to thank the staff at the CAMI MRI centre for assistance with scanner access.

Author information

Authors and Affiliations

Authors

Contributions

Knight: Protocol/project development, data collection or management, data analysis. Browne: Protocol/project development. Meaney: Data collection or management. Fagan: Protocol/project development, data collection or management, data analysis.

Corresponding author

Correspondence to Andrew John Fagan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest. For this type of study, formal consent is not required.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knight, S.P., Browne, J.E., Meaney, J.F. et al. Quantitative effects of acquisition duration and temporal resolution on the measurement accuracy of prostate dynamic contrast-enhanced MRI data: a phantom study. Magn Reson Mater Phy 30, 461–471 (2017). https://doi.org/10.1007/s10334-017-0619-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-017-0619-y

Keywords

Navigation