Skip to main content

Dynamic DTI (dDTI) shows differing temporal activation patterns in post-exercise skeletal muscles

Abstract

Object

To assess post-exercise recovery of human calf muscles using dynamic diffusion tensor imaging (dDTI).

Materials and methods

DTI data (6 directions, b = 0 and 400 s/mm2) were acquired every 35 s from seven healthy men using a 3T MRI, prior to (4 volumes) and immediately following exercise (13 volumes, ~7.5 min). Exercise consisted of 5-min in-bore repetitive dorsiflexion-eversion foot motion with 0.78 kg resistance. Diffusion tensors calculated at each time point produced maps of mean diffusivity (MD), fractional anisotropy (FA), radial diffusivity (RD), and signal at b = 0 s/mm2 (S0). Region-of-interest (ROI) analysis was performed on five calf muscles: tibialis anterior (ATIB), extensor digitorum longus (EDL) peroneus longus (PER), soleus (SOL), and lateral gastrocnemius (LG).

Results

Active muscles (ATIB, EDL, PER) showed significantly elevated initial MD post-exercise, while predicted inactive muscles (SOL, LG) did not (p < 0.0001). The EDL showed a greater initial increase in MD (1.90 × 10−4mm2/s) than ATIB (1.03 × 10−4mm2/s) or PER (8.79 × 10−5 mm2/s) (p = 7.40 × 10−4), and remained significantly elevated across more time points than ATIB or PER. Significant increases were observed in post-exercise EDL S0 relative to other muscles across the majority of time points (p < 0.01 to p < 0.001).

Conclusions

dDTI can be used to differentiate exercise-induced changes between muscles. These differences are suggested to be related to differences in fiber composition.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Cleveland GG, Chang DC, Hazlewood CF, Rorschach HE (1976) Nuclear magnetic resonance measurement of skeletal muscle. Biophys J 16:1043–1053

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Van Donkelaar CC, Kretzers LJ, Bovendeerd PH, Lataster LM, Nicolay K, Janssen JD, Drost MR (1999) Diffusion tensor imaging in biomechanical studies of skeletal muscle function. J Anat 194:79–88

    Article  PubMed  Google Scholar 

  3. 3.

    Kermarrec E, Budzik JF, Khalil C, Le Thuc V, Hancart-Destee C, Cotton A (2010) In vivo diffusion tensor imaging and tractography of human thigh muscles in healthy subjects. Am J Roentgenol 195:W352–W356

    Article  Google Scholar 

  4. 4.

    Galban CJ, Maderwald S, Uffman K, de Greiff A, Ladd ME (2004) Diffusive sensitivity to muscle architecture: a magnetic resonance diffusion tensor imaging study of the human calf. Eur J Appl Physiol 93:253–262

    Article  PubMed  Google Scholar 

  5. 5.

    Sinha S, Sinha U, Edgerton VR (2006) In vivo diffusion tensor imaging of the human calf muscle. J Magn Reson Imaging 24:182–190

    Article  PubMed  Google Scholar 

  6. 6.

    Deux JF, Malzy P, Paragios N, Bassez G, Luciani A, Zerbib P, Roudot-Thoraval F, Vignaud A, Kobeiter H, Rahmouni A (2008) Assessment of calf muscle contraction by diffusion tensor imaging. Eur Radiol 18:2303–2310

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Hatakenaka M, Yabuuchi H, Sunami S, Kamitani T, Takayama Y, Nishikawa K, Honda H (2010) Joint position affects muscle proton diffusion: evaluation with a 3-T MR system. Am J Roent 194:W208–W211

    Article  Google Scholar 

  8. 8.

    Okamoto Y, Mori S, Kujiraoka Y, Katsuhiro N, Hirano Y, Minami M (2012) Diffusion property differences of the lower leg musculature between athletes and non-athletes using 1.5T MRI. Magn Reson Mater Phy (MAGMA) 25:277–284

    Article  Google Scholar 

  9. 9.

    Nakai R, Azuma T, Sudo M, Urayama S, Takizawa O, Tsutsumi S (2008) MRI analysis of structural changes in skeletal muscles and surrounding tissues following long-term walking exercise with training equipment. J Appl Physiol 105:958–963

    Article  PubMed  Google Scholar 

  10. 10.

    Morvan D, Leroy-Willig A (1995) Simultaneous measurements of diffusion and transverse relaxation in exercising skeletal muscle. Magn Reson Imaging 13:943–948

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Nygren AT, Kaijser L (2002) Water exchange induced by unilateral exercise in active and inactive skeletal muscles. J Appl Physiol 93:1716–1722

    Article  PubMed  Google Scholar 

  12. 12.

    Ababneh ZQ, Ababneh R, Maier SE, Winalski CS, Oshio K, Ababneh AM, Mulkern RV (2008) On the correlation between T2 and tissue diffusion coefficients in exercised muscle: quantitative measurements at 3T within the tibialis anterior. Magn Reson Mater Phy (MAGMA) 21:273–278

    CAS  Article  Google Scholar 

  13. 13.

    Morvan D (1995) In vivo measurement of diffusion and pseudo-diffusion in skeletal muscle at rest and after exercise. Magn Reson Imaging 13:193–199

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Sigmund EE, Novikov DS, Sui D, Ukpebor O, Baete S, Babb JS, Liu K, Feiweier T, Kwon J, McGorty K, Bencardino J, Fieremans E (2014) Time-dependent diffusion in skeletal muscle with the random permeable barrier model (RPBM): application to normal controls and chronic exertional compartment syndrome patients. NMR Biomed 27:519–528

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Okamoto Y, Kunimatsu A, Miki S, Shindo M, Niitsu M, Minami M (2008) Fraction anisotropy values of calf muscles in normative state after exercise: preliminary results. Magn Reson Med Sci 7:157–162

    Article  PubMed  Google Scholar 

  16. 16.

    Cermak NM, Noseworthy MD, Bourgeois JM, Tarnopolsky MA, Gibala MJ (2012) Diffusion tensor MRI to assess skeletal muscle disruption following eccentric exercise. Muscle Nerv 46:42–50

    Article  Google Scholar 

  17. 17.

    Yangisawa O, Kurihara T, Koayashi N, Fukubayashi T (2011) Strenuous resistance exercise effects on magnetic resonance diffusion parameters and muscle-tendon function in human skeletal muscle. J Magn Reson Imaging 34:887–894

    Article  Google Scholar 

  18. 18.

    Froeling M, Oudeman J, Strijkers GJ, Maas M, Drost MR, Nicolay K, Nederveen AJ (2015) Muscle changes detected with diffusion-tensor imaging after long distance running. Radiology 274:548–562

    Article  PubMed  Google Scholar 

  19. 19.

    Baete SH, Cho GY, Sigmund EE (2015) Dynamic diffusion-tensor measurements in muscle tissue using the single-line multiple-echo diffusion-tensor acquisition technique at 3T. NMR Biomed 28:667–678

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Polgar J, Johnson MA, Weightman D, Appleton D (1973) Data on fibre size in thirty six human muscles: an autopsy study. J Neurol Sci 19:307–318

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Basmajian JV, De Luca CJ (1985) Muscles alive: their functions revealed by electromyography hardcover, 5th edn. Williams & Wilkins, New York, p 561

    Google Scholar 

  22. 22.

    Andersen P, Kroese AJ (1978) Capillary supply in soleus and gastrocnemius muscles of man. Pflug Arch 375:245–249

    CAS  Article  Google Scholar 

  23. 23.

    Johnson MA, Polgar J, Weightman D, Appleton D (1973) Data on the distribution of fibre types in thirty-six human muscles: an autopsy study. J Neurol Sci 18:111–129

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Snell RS (2012) Clinical anatomy by regions, 9th edn. Lippincott Williams & Wilkens, Philadelphia

    Google Scholar 

  25. 25.

    Rockel C, Davis A, Wells G, Noseworthy MD (2012) Monitoring exercise-induced muscle changes using diffusion tensor imaging. In: Proceedings of the 20th scientific meeting, International Society for Magnetic Resonance in Medicine, Melbourne, Australia, p 1425

  26. 26.

    Elzibak AH, Noseworthy MD (2014) Assessment of diffusion tensor imaging indices in calf muscles following postural change from standing to supine position. Magn Reson Mater Phy (MAGMA) 27:387–395

    CAS  Article  Google Scholar 

  27. 27.

    Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM (2012) FSL. NeuroImage 62:782–790

    Article  PubMed  Google Scholar 

  28. 28.

    Damon BM, Gregory CD, Hall KL, Stark HJ, Gulani V, Dawson MJ (2002) Intracellular acidification and volume increases explain R2 decreases in exercising muscle. Magn Reson Med 47:14–23

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Rockel C, Noseworthy MD (2016) An exploration of diffusion tensor eigenvector variability within human calf muscles. J Magn Reson Imaging 43:190–202

    Article  PubMed  Google Scholar 

  30. 30.

    Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO (2007) Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 26:375–385

    Article  PubMed  Google Scholar 

  31. 31.

    Rockel C, Noseworthy MD (2015) Modification of signal-to-noise calculation for use in spatial mapping. In: Proceedings of the 29th scientific meeting, European Society for Magnetic Resonance in Medicine and Biology, Edinburgh, Scotland, p 646

  32. 32.

    Lundvall J, Mellander S, Westling H, White T (1972) Fluid transfers between blood and tissues during exercise. Acta Physiol Scand 85:258–269

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Saab G, Thompson RT, Marsh GD (2000) Effects of exercise on muscle transverse relaxation determined by MR imaging and in vivo relaxometry. J Appl Physiol 88:226–233

    CAS  PubMed  Google Scholar 

  34. 34.

    Okamoto Y, Kunimatsu A, Kono T, Nasu K, Sonobe J, Minami M (2010) Changes in MR diffusion properties during active muscle contraction in the calf. Magn Reson Med Sci 9:1–8

    Article  PubMed  Google Scholar 

  35. 35.

    Scheel M, von Roth P, Winkler T, Arampatzis A, Prokscha T, Hamm B, Diederichs G (2013) Fiber type characterization in skeletal muscle by diffusion tensor imaging. NMR Biomed 26:1220–1224

    Article  PubMed  Google Scholar 

  36. 36.

    Fitts RH, Widrick JJ (1995) Muscle mechanics: adaptations with exercise-training. Exerc Sport Sci Rev 24:427–474

    Google Scholar 

  37. 37.

    Edgarton VR, Smith JL, Simpson DR (1975) Muscle fibre type populations of human leg muscles. Histochem J 7:259–266

    Article  Google Scholar 

  38. 38.

    Houmard JA, Smith R, Jenrasiak GL (1995) Relationship between MRI relaxation time and muscle fiber composition. J Appl Physiol 78:807–809

    CAS  PubMed  Google Scholar 

  39. 39.

    Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505

    Article  PubMed  Google Scholar 

  40. 40.

    Noseworthy MD, Kim JK, Stainsby JA, Stanisz GJ, Wright GA (1999) Tracking oxygen effects on MR signal in blood and skeletal muscle during hyperoxia exposure. J Magn Reson Imaging 9:814–820

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Fleckenstein JL, Canby RC, Parkey RW, Peshock RM (1988) Acute effects of exercise on MR imaging of skeletal muscle in normal volunteers. Am J Radiol 151:231–237

    CAS  Google Scholar 

  42. 42.

    Fisher MJ, Meyer RA, Adams GR, Foley JM, Potchen EJ (1990) Direct relationship between proton T2 and exercise intensity in skeletal muscle MR images. Invest Radiol 25:480–485

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Adams GR, Duvoisin MR, Dudlet GA (1992) Magnetic resonance imaging and electromyography as indexes of muscle function. J Appl Physiol 73:1578–1583

    CAS  PubMed  Google Scholar 

  44. 44.

    Price TB, Kamen G, Damon BM, Knight CA, Applegate B, Gore JC, Eward K, Signorile JF (2003) Comparison of MRI with EMG to study muscle activity associated with dynamic plantar flexion. Magn Reson Imaging 21:853–861

    Article  PubMed  Google Scholar 

  45. 45.

    Prior BM, Ploutz-Snyder LL, Cooper TG, Meyer RA (2001) Fiber type and metabolic dependence of T2 increases in stimulated rat muscles. J Appl Physiol 90:615–623

    CAS  PubMed  Google Scholar 

  46. 46.

    Tesch PA, Karlsson J (1985) Muscle fiber types and size in trained and untrained muscles of elite athletes. J Appl Physiol 59:1716–1720

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding was provided to CR in the form of a Natural Sciences and Engineering Research Council (NSERC) of Canada CGS-D PhD scholarship. The research was funded through an NSERC Discovery grant to MDN.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael D. Noseworthy.

Ethics declarations

Conflict of interest

No author has any potential conflict of interest with respect to the work described and performed in this current manuscript. Dr. Michael Noseworthy has received a one-time lecture honorarium from GE Healthcare (Canada) for two 50-min lectures delivered in September 2015 to MRI technologists. These lectures were not in any way related to the current work.

Research involving human participants and/or animals

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 106 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rockel, C., Akbari, A., Kumbhare, D.A. et al. Dynamic DTI (dDTI) shows differing temporal activation patterns in post-exercise skeletal muscles. Magn Reson Mater Phy 30, 127–138 (2017). https://doi.org/10.1007/s10334-016-0587-7

Download citation

Keywords

  • DTI
  • Skeletal muscle
  • Exercise
  • Recovery
  • Time course
  • Human