Technical feasibility of integrating 7 T anatomical MRI in image-guided radiotherapy of glioblastoma: a preparatory study

Abstract

Objectives

The use of 7 Tesla (T) magnetic resonance imaging (MRI) has recently shown great potential for high-resolution soft-tissue neuroimaging and visualization of microvascularization in glioblastoma (GBM). We have designed a clinical trial to explore the value of 7 T MRI in radiation treatment of GBM. For this aim we performed a preparatory study to investigate the technical feasibility of incorporating 7 T MR images into the neurosurgical navigation and radiotherapy treatment planning (RTP) systems via qualitative and quantitative assessment of the image quality.

Materials and methods

The MR images were acquired with a Siemens Magnetom 7 T whole-body scanner and a Nova Medical 32-channel head coil. The 7 T MRI pulse sequences included magnetization-prepared two rapid acquisition gradient echoes (MP2RAGE), T2-SPACE, SPACE-FLAIR and gradient echo sequences (GRE). A pilot study with three healthy volunteers and an anthropomorphic 3D phantom was used to assess image quality and geometrical image accuracy.

Results

The MRI scans were well tolerated by the volunteers. Susceptibility artefacts were observed in both the cortex and subcortical white matter at close proximity to air-tissue interfaces. Regional loss of signal and contrast could be minimized by the use of dielectric pads. Image transfer and processing did not degrade image quality. The system-related spatial uncertainty of geometrical distortion-corrected MP2RAGE pulse sequences was ≤2 mm.

Conclusion

Integration of high-quality and geometrically-reliable 7 T MR images into neurosurgical navigation and RTP software is technically feasible and safe.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):459–466. doi:10.1016/S1470-2045(09)70025-7

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Claes A, Idema AJ, Wesseling P (2007) Diffuse glioma growth: a guerilla war. Acta Neuropathol 114(5):443–458. doi:10.1007/s00401-007-0293-7

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Weller M, van den Bent M, Hopkins K, Tonn JC, Stupp R, Falini A, Cohen-Jonathan-Moyal E, Frappaz D, Henriksson R, Balana C, Chinot O, Ram Z, Reifenberger G, Soffietti R, Wick W (2014) EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. Lancet Oncol 15(9):e395–e403. doi:10.1016/s1470-2045(14)70011-7

    Article  PubMed  Google Scholar 

  4. 4.

    Chang EL, Akyurek S, Avalos T, Rebueno N, Spicer C, Garcia J, Famiglietti R, Allen PK, Chao KS, Mahajan A, Woo SY, Maor MH (2007) Evaluation of peritumoral edema in the delineation of radiotherapy clinical target volumes for glioblastoma. Int J Radiat Oncol Biol Phys 68(1):144–150. doi:10.1016/j.ijrobp.2006.12.009

    Article  PubMed  Google Scholar 

  5. 5.

    Oppitz U, Maessen D, Zunterer H, Richter S, Flentje M (1999) 3D-recurrence-patterns of glioblastomas after CT-planned postoperative irradiation. Radiother Oncol 53(1):53–57. doi:10.1016/s0167-8140(99)00117-6

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Kuroiwa T, Ueki M, Chen Q, Suemasu H, Taniguchi I, Okeda R (1994) Biomechanical characteristics of brain edema: the difference between vasogenic-type and cytotoxic-type edema. Acta Neurochir Suppl (Wien) 60:158–161

    CAS  Google Scholar 

  7. 7.

    Louis DN (2007) WHO classification of tumours of the central nervous system. World Health Organization. WHO Press, Geneva, Switzerland

  8. 8.

    Moenninghoff C, Maderwald S, Theysohn JM, Kraff O, Ladd ME, El Hindy N, van de Nes J, Forsting M, Wanke I (2010) Imaging of adult astrocytic brain tumours with 7 T MRI: preliminary results. Eur Radiol 20(3):704–713. doi:10.1007/s00330-009-1592-2

    Article  PubMed  Google Scholar 

  9. 9.

    Christoforidis GA, Grecula JC, Newton HB, Kangarlu A, Abduljalil AM, Schmalbrock P, Chakeres DW (2002) Visualization of microvascularity in glioblastoma multiforme with 8-T high-spatial-resolution MR imaging. AJNR Am J Neuroradiol 23(9):1553–1556

    PubMed  Google Scholar 

  10. 10.

    Christoforidis GA, Yang M, Abduljalil A, Chaudhury AR, Newton HB, McGregor JM, Epstein CR, Yuh WT, Watson S, Robitaille PM (2012) “Tumoral pseudoblush” identified within gliomas at high-spatial-resolution ultrahigh-field-strength gradient-echo MR imaging corresponds to microvascularity at stereotactic biopsy. Radiology 264(1):210–217. doi:10.1148/radiol.12110799

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Lupo JM, Li Y, Hess CP, Nelson SJ (2011) Advances in ultra-high field MRI for the clinical management of patients with brain tumors. Curr Opin Neurol 24(6):605–615. doi:10.1097/WCO.0b013e32834cd495

    Article  PubMed  Google Scholar 

  12. 12.

    Dammann P, Kraff O, Wrede KH, Ozkan N, Orzada S, Mueller OM, Sandalcioglu IE, Sure U, Gizewski ER, Ladd ME, Gasser T (2011) Evaluation of hardware-related geometrical distortion in structural MRI at 7 Tesla for image-guided applications in neurosurgery. Acad Radiol 18(7):910–916. doi:10.1016/j.acra.2011.02.011

    Article  PubMed  Google Scholar 

  13. 13.

    Cho ZH, Min HK, Oh SH, Han JY, Park CW, Chi JG, Kim YB, Paek SH, Lozano AM, Lee KH (2010) Direct visualization of deep brain stimulation targets in Parkinson disease with the use of 7-tesla magnetic resonance imaging. J Neurosurg 113(3):639–647. doi:10.3171/2010.3.jns091385

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Duchin Y, Abosch A, Yacoub E, Sapiro G, Harel N (2012) Feasibility of using ultra-high field (7 T) MRI for clinical surgical targeting. PLoS One 7(5):e37328. doi:10.1371/journal.pone.0037328

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Teeuwisse WM, Brink WM, Haines KN, Webb AG (2012) Simulations of high permittivity materials for 7 T neuroimaging and evaluation of a new barium titanate-based dielectric. Magn Reson Med 67(4):912–918. doi:10.1002/mrm.24176

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Schenck JF (1996) The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys 23(6):815–850

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Marques JP, Kober T, Krueger G, van der Zwaag W, Van de Moortele PF, Gruetter R (2010) MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. Neuroimage 49(2):1271–1281. doi:10.1016/j.neuroimage.2009.10.002

    Article  PubMed  Google Scholar 

  18. 18.

    Mugler JP 3rd, Brookeman JR (1990) Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn Reson Med 15(1):152–157

    Article  PubMed  Google Scholar 

  19. 19.

    Wrede KH, Johst S, Dammann P, Umutlu L, Schlamann MU, Sandalcioglu IE, Sure U, Ladd ME, Maderwald S (2012) Caudal image contrast inversion in MPRAGE at 7 Tesla: problem and solution. Acad Radiol 19(2):172–178. doi:10.1016/j.acra.2011.10.004

    Article  PubMed  Google Scholar 

  20. 20.

    Marques JP, Gruetter R (2013) New developments and applications of the MP2RAGE sequence–focusing the contrast and high spatial resolution R1 mapping. PLoS One 8(7):e69294. doi:10.1371/journal.pone.0069294

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    O’Brien KR, Kober T, Hagmann P, Maeder P, Marques J, Lazeyras F, Krueger G, Roche A (2014) Robust T1-weighted structural brain imaging and morphometry at 7 T using MP2RAGE. PLoS One 9(6):e99676. doi:10.1371/journal.pone.0099676

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Hurley AC, Al-Radaideh A, Bai L, Aickelin U, Coxon R, Glover P, Gowland PA (2010) Tailored RF pulse for magnetization inversion at ultrahigh field. Magn Reson Med 63(1):51–58. doi:10.1002/mrm.22167

    PubMed  Google Scholar 

  23. 23.

    Okubo G, Okada T, Yamamoto A, Kanagaki M, Fushimi Y, Okada T, Murata K, Togashi K (2015) MP2RAGE for deep gray matter measurement of the brain: a comparative study with MPRAGE. J Magn Reson Imaging. doi:10.1002/jmri.24960

    PubMed  Google Scholar 

  24. 24.

    Van de Moortele PF, Auerbach EJ, Olman C, Yacoub E, Ugurbil K, Moeller S (2009) T1 weighted brain images at 7 Tesla unbiased for Proton Density, T2* contrast and RF coil receive B1 sensitivity with simultaneous vessel visualization. Neuroimage 46(2):432–446. doi:10.1016/j.neuroimage.2009.02.009

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Hennig J, Nauerth A, Friedburg H (1986) RARE imaging: a fast imaging method for clinical MR. Magn Reson Med 3(6):823–833

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Mugler JP, Kiefer B, Brookeman JT (2000) Three-dimensional T2-weighted imaging of the brain using very long spin-echo trains. In: Proceedings of the 8th Scientific Meeting of the International Society for Magnetic Resonance in Medicine. Denver, Colorado, p 687

  27. 27.

    Mugler JP, Wald LL, Brookeman JR (2001) T2-weighted 3D spin-echo train imaging of the brain at 3 Tesla: reduced power deposition using low flip-angle refocusing RF pulses. In: Proceedings of the 9th Scientific Meeting of the International Society for Magnetic Resonance in Medicine. Glasgow, Scotland, p 438

  28. 28.

    Busse RF, Hariharan H, Vu A, Brittain JH (2006) Fast spin echo sequences with very long echo trains: design of variable refocusing flip angle schedules and generation of clinical T2 contrast. Magn Reson Med 55(5):1030–1037. doi:10.1002/mrm.20863

    Article  PubMed  Google Scholar 

  29. 29.

    Schaap K, Christopher-de Vries Y, Mason CK, de Vocht F, Portengen L, Kromhout H (2014) Occupational exposure of healthcare and research staff to static magnetic stray fields from 1.5–7 T MRI scanners is associated with reporting of transient symptoms. Occup Environ Med 71(6):423–429. doi:10.1136/oemed-2013-101890

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Heilmaier C, Theysohn JM, Maderwald S, Kraff O, Ladd ME, Ladd SC (2011) A large-scale study on subjective perception of discomfort during 7 and 1.5 T MRI examinations. Bioelectromagnetics 32(8):610–619. doi:10.1002/bem.20680

    Article  PubMed  Google Scholar 

  31. 31.

    Ward BK, Roberts DC, Della Santina CC, Carey JP, Zee DS (2015) Vestibular stimulation by magnetic fields. Ann N Y Acad Sci 1343:69–79. doi:10.1111/nyas.12702

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Brink WM, van der Jagt AM, Versluis MJ, Verbist BM, Webb AG (2014) High permittivity dielectric pads improve high spatial resolution magnetic resonance imaging of the inner ear at 7 T. Invest Radiol 49(5):271–277. doi:10.1097/rli.0000000000000026

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Price RR, Axel L, Morgan T, Newman R, Perman W, Schneiders N, Selikson M, Wood M, Thomas SR (1990) Quality assurance methods and phantoms for magnetic resonance imaging: report of AAPM nuclear magnetic resonance Task Group No. 1. Med Phys 17(2):287–295

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Lerski RA, Schad LR (1998) The use of reticulated foam in texture test objects for magnetic resonance imaging. Magn Reson Imaging 16(9):1139–1144

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Wang D, Doddrell DM, Cowin G (2004) A novel phantom and method for comprehensive 3-dimensional measurement and correction of geometric distortion in magnetic resonance imaging. Magn Reson Imaging 22(4):529–542. doi:10.1016/j.mri.2004.01.008

    Article  PubMed  Google Scholar 

  36. 36.

    Roue A, Ferreira IH, Van Dam J, Svensson H, Venselaar JL (2006) The EQUAL-ESTRO audit on geometric reconstruction techniques in brachytherapy. Radiother Oncol 78(1):78–83. doi:10.1016/j.radonc.2005.12.004

    Article  PubMed  Google Scholar 

  37. 37.

    Kim HY, Lee SI, Jin SJ, Jin SC, Kim JS, Jeon KD (2014) Reliability of stereotactic coordinates of 1.5 and 3 T MRI in radiosurgery and functional neurosurgery. J Korean Neurosurg 55(3):136–141. doi:10.3340/jkns.2014.55.3.136

    Article  Google Scholar 

  38. 38.

    Walker A, Liney G, Metcalfe P, Holloway L (2014) MRI distortion: considerations for MRI based radiotherapy treatment planning. Australas Phys Eng Sci Med 37(1):103–113. doi:10.1007/s13246-014-0252-2

    Article  PubMed  Google Scholar 

  39. 39.

    van Herk M (2004) Errors and margins in radiotherapy. Semin Radiat Oncol 14(1):52–64. doi:10.1053/j.semradonc.2003.10.003

    Article  PubMed  Google Scholar 

  40. 40.

    Wang D, Strugnell W, Cowin G, Doddrell DM, Slaughter R (2004) Geometric distortion in clinical MRI systems Part II: correction using a 3D phantom. Magn Reson Imaging 22(9):1223–1232. doi:10.1016/j.mri.2004.08.014

    Article  PubMed  Google Scholar 

  41. 41.

    Baldwin LN, Wachowicz K, Thomas SD, Rivest R, Fallone BG (2007) Characterization, prediction, and correction of geometric distortion in 3 T MR images. Med Phys 34(2):388–399

    Article  PubMed  Google Scholar 

  42. 42.

    Schmidt MA, Payne GS (2015) Radiotherapy planning using MRI. Phys Med Biol 60(22):R323–R361. doi:10.1088/0031-9155/60/22/r323

    Article  PubMed  Google Scholar 

  43. 43.

    Chang HC, Chuang TC, Lin YR, Wang FN, Huang TY, Chung HW (2013) Correction of geometric distortion in Propeller echo planar imaging using a modified reversed gradient approach. Quant Imaging Medicine Surg 3(2):73–81. doi:10.3978/j.issn.2223-4292.2013.03.05

    Google Scholar 

  44. 44.

    Wang FN, Huang TY, Lin FH, Chuang TC, Chen NK, Chung HW, Chen CY, Kwong KK (2005) PROPELLER EPI: an MRI technique suitable for diffusion tensor imaging at high field strength with reduced geometric distortions. Magn Reson Med 54(5):1232–1240. doi:10.1002/mrm.20677

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the Brains Unlimited Pioneer Fund of the Limburg University Fund/SWOL. We would like to thank B.G. Baumert MD, PhD, MBA, for her support with the study concept. Furthermore, we would like to thank the Support Team at Scannexus, Margo van de Wetering and Esther Steijvers, for their support in the acquisition and optimization of the 7 T MRI sequences.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Inge Compter.

Ethics declarations

Conflict of interest

Inge Compter has received a research grant from the Brains Unlimited Pioneer Fund of the Limburg University Fund/SWOL. Jurgen Peerlings declares that he has no conflict of interest Daniëlle B.P. Eekers declares that she has no conflict of interest Alida A. Postma declares that she has no conflict of interest Dimo Ivanov declares that he has no conflict of interest Christopher J. Wiggins declares that he has no conflict of interest Pieter Kubben declares that he has no conflict of interest Benno Küsters declares that he has no conflict of interest Pieter Wesseling declares that he has no conflict of interest Linda Ackermans declares that she has no conflict of interest Olaf E.M.G. Schijns declares that he has no conflict of interest Philippe Lambin declares that he has no conflict of interest Aswin L. Hoffmann declares that he has no conflict of interest.

Ethical approval

The study was approved by the Medical Review Ethics Committee Maastricht UMC+ (Ethics code: 143018).

Research involving human participants

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study. This trial is registered on clinicaltrials.gov (NCT02062372).

Additional information

I. Compter and J. Peerlings contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Compter, I., Peerlings, J., Eekers, D.B.P. et al. Technical feasibility of integrating 7 T anatomical MRI in image-guided radiotherapy of glioblastoma: a preparatory study. Magn Reson Mater Phy 29, 591–603 (2016). https://doi.org/10.1007/s10334-016-0534-7

Download citation

Keywords

  • Ultra-high field MRI
  • Radiotherapy
  • Treatment planning
  • Glioblastoma
  • Geometrical distortion