Skip to main content
Log in

High resolution imaging of the intracranial vessel wall at 3 and 7 T using 3D fast spin echo MRI

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript



High resolution MRI of the intracranial vessel wall provides important insights in the assessment of intracranial vascular disease. This study aims to refine high resolution 3D MRI techniques for intracranial vessel wall imaging at both 3 and 7 T using customized flip angle train design, and to explore their comparative abilities.

Materials and methods

11 patients with intracranial artery disease (four atherosclerotic plaques, six aneurysms and one reversible cerebral vasoconstriction syndrome) were imaged at 3 and 7 T with a 3D T 1-weighted fast-spin-echo sequence (SPACE) both pre and post Gd contrast injection. Wall to lumen contrast ratio (CRwall-lumen), contrast enhancement ratio (ER) and the sharpness of the vessel wall were quantified. Two experienced radiologists evaluated the image quality on a 0–5 scale.


Both 3 and 7 T achieved good image quality with high resolution (nominal 0.5 mm isotropic) and whole brain coverage. The CRwall-lumen and the ER measurements were comparable (p > 0.05). The 7 T images were significantly sharper (sharpness: 2.69 ± 0.50 vs. 1.88 ± 0.53 mm−1, p < 0.001) with higher image quality (reader 1 score: 3.5 ± 1.1 vs. 2.4 ± 1.1, p = 0.002) compared to 3 T.


3D T 1-weighted SPACE can be used for intracranial vessel wall evaluation at both 3 and 7 T. 7 T provides significantly better image quality and improves the confidence of diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others


  1. Gorelick PB, Wong KS, Bae HJ, Pandey DK (2008) Large artery intracranial occlusive disease: a large worldwide burden but a relatively neglected frontier. Stroke 39(8):2396–2399

    Article  PubMed  Google Scholar 

  2. Brown RD Jr, Broderick JP (2014) Unruptured intracranial aneurysms: epidemiology, natural history, management options, and familial screening. Lancet Neurol 13(4):393–404

    Article  PubMed  Google Scholar 

  3. Xu WH, Li ML, Gao S, Ni J, Zhou LX, Yao M, Peng B, Feng F, Jin ZY, Cui LY (2011) Plaque distribution of stenotic middle cerebral artery and its clinical relevance. Stroke 42(10):2957–2959

    Article  PubMed  Google Scholar 

  4. Qiao Y, Steinman DA, Qin Q, Etesami M, Schar M, Astor BC, Wasserman BA (2011) Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 Tesla. J Magn Reson Imaging 34(1):22–30

    Article  PubMed  Google Scholar 

  5. Zhang X, Zhu C, Peng W, Tian B, Chen L, Teng Z, Lu J, Sadat U, Saloner D, Liu Q (2015) Scan-rescan reproducibility of high resolution magnetic resonance imaging of atherosclerotic plaque in the middle cerebral artery. PLoS ONE 10(8):e0134913

    Article  PubMed  PubMed Central  Google Scholar 

  6. van der Kolk AG, Hendrikse J, Brundel M, Biessels GJ, Smit EJ, Visser F, Luijten PR, Zwanenburg JJ (2013) Multi-sequence whole-brain intracranial vessel wall imaging at 7.0 tesla. Eur Radiol 23(11):2996–3004

    Article  PubMed  Google Scholar 

  7. Turan TN, Bonilha L, Morgan PS, Adams RJ, Chimowitz MI (2011) Intraplaque hemorrhage in symptomatic intracranial atherosclerotic disease. J Neuroimaging 21(2):e159–e161

    Article  PubMed  Google Scholar 

  8. Qiao Y, Zeiler SR, Mirbagheri S, Leigh R, Urrutia V, Wityk R, Wasserman BA (2014) Intracranial plaque enhancement in patients with cerebrovascular events on high-spatial-resolution MR images. Radiology 271(2):534–542

    Article  PubMed  PubMed Central  Google Scholar 

  9. Swartz RH, Bhuta SS, Farb RI, Agid R, Willinsky RA, Terbrugge KG, Butany J, Wasserman BA, Johnstone DM, Silver FL, Mikulis DJ (2009) Intracranial arterial wall imaging using high-resolution 3-tesla contrast-enhanced MRI. Neurology 72(7):627–634

    Article  CAS  PubMed  Google Scholar 

  10. Edjlali M, Gentric JC, Regent-Rodriguez C, Trystram D, Hassen WB, Lion S, Nataf F, Raymond J, Wieben O, Turski P, Meder JF, Oppenheim C, Naggara O (2014) Does aneurysmal wall enhancement on vessel wall MRI help to distinguish stable from unstable intracranial aneurysms? Stroke 45(12):3704–3706

    Article  PubMed  Google Scholar 

  11. Zhu C, Haraldsson H, Faraji F, Owens C, Gasper W et al` (2016) Isotropic 3D black blood MRI of abdominal aortic aneurysm wall and intraluminal thrombus. Magn Reson Imaging 34:18–25

    Article  PubMed  Google Scholar 

  12. Zhu C, Sadat U, Patterson AJ, Teng Z, Gillard JH, Graves MJ (2014) 3D high-resolution contrast enhanced MRI of carotid atheroma–a technical update. Magn Reson Imaging 32(5):594–597

    Article  PubMed  Google Scholar 

  13. Mugler JP 3rd (2014) Optimized three-dimensional fast-spin-echo MRI. J Magn Reson Imaging 39(4):745–767

    Article  PubMed  Google Scholar 

  14. Busse RF, Brau AC, Vu A, Michelich CR, Bayram E, Kijowski R, Reeder SB, Rowley HA (2008) Effects of refocusing flip angle modulation and view ordering in 3D fast spin echo. Magn Reson Med 60(3):640–649

    Article  PubMed  PubMed Central  Google Scholar 

  15. Harteveld AA, Denswil NP, Siero JC, Zwanenburg JJ, Vink A, Pouran B, Spliet WG, Klomp DW, Luijten PR, Daemen MJ, Hendrikse J, van der Kolk AG (2015) Quantitative Intracranial Atherosclerotic Plaque Characterization at 7 T MRI: An Ex Vivo Study with Histologic Validation. AJNR Am J Neuroradiol. doi:10.3174/anjr.A4628

    PubMed  Google Scholar 

  16. Koning W, de Rotte AA, Bluemink JJ, van der Velden TA, Luijten PR, Klomp DW, Zwanenburg JJ (2015) MRI of the carotid artery at 7 Tesla: quantitative comparison with 3 Tesla. JMRI 41(3):773–780

    Article  PubMed  Google Scholar 

  17. Feiweier T, Heubes P (2006) Method and magnetic resonance tomography apparatus for spatially resolved measurement of the B1 field distribution. US Patent: US7038453 B2,

  18. Larson AC, Kellman P, Arai A, Hirsch GA, McVeigh E, Li D, Simonetti OP (2005) Preliminary investigation of respiratory self-gating for free-breathing segmented cine MRI. Magn Reson Med 53(1):159–168

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kleinloog R, Korkmaz E, Zwanenburg JJ, Kuijf HJ, Visser F, Blankena R, Post JA, Ruigrok YM, Luijten PR, Regli L, Rinkel GJ, Verweij BH (2014) Visualization of the aneurysm wall: a 7.0-tesla magnetic resonance imaging study. Neurosurgery 75(6):614–622; discussion 622

  20. Han M, Chiba K, Banerjee S, Carballido-Gamio J, Krug R (2015) Variable flip angle three-dimensional fast spin-echo sequence combined with outer volume suppression for imaging trabecular bone structure of the proximal femur. J Magn Reson Imaging 41(5):1300–1310

    Article  PubMed  PubMed Central  Google Scholar 

  21. Underhill HR, Hatsukami TS, Fayad ZA, Fuster V, Yuan C (2010) MRI of carotid atherosclerosis: clinical implications and future directions. Nat Rev Cardiol 7(3):165–173

    Article  PubMed  Google Scholar 

  22. Busse RF (2006) Flow Sensitivity of CPMG Sequences with Variable Flip Refocusing and Implications for CSF Signal Uniformity in 3D-FSE Imaging. Proc Intl Soc Mag Reson Med 14:2430

    Google Scholar 

  23. Zhu C, Graves MJ, Yuan J, Sadat U, Gillard JH, Patterson AJ (2014) Optimization of improved motion-sensitized driven-equilibrium (iMSDE) blood suppression for carotid artery wall imaging. J Cardiovasc Magn Reson 16:61

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang J, Helle M, Zhou Z, Bornert P, Hatsukami TS et al (2016) Joint blood and cerebrospinal fluid suppression for intracranial vessel wall MRI. Magn Reson Med 75:831–838

    Article  PubMed  Google Scholar 

Download references

Authors’ contributions

Protocol/project development: Chengcheng Zhu, Henrik Haraldsson, John Grinstead, Sinyeob Ahn, Gerhard Laub, David Saloner. Data collection or management: Chengcheng Zhu, Henrik Haraldsson, Karl Meisel, Nerissa Ko, Michael Lawton. Data analysis: Chengcheng Zhu, Christopher Hess, Bing Tian

Author information

Authors and Affiliations


Corresponding author

Correspondence to Chengcheng Zhu.

Ethics declarations

Conflict of interest

John Grinstead, Sinyeob Ahn and Gerhard Laub are employees of Siemens. Other authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This study was conducted under IRB approval of the University of California San Francisco (reference number: 10-03248).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Haraldsson, H., Tian, B. et al. High resolution imaging of the intracranial vessel wall at 3 and 7 T using 3D fast spin echo MRI. Magn Reson Mater Phy 29, 559–570 (2016).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: