Skip to main content

Advertisement

Log in

Correction of B 0-induced geometric distortion variations in prospective motion correction for 7T MRI

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

Prospective motion correction can effectively fix the imaging volume of interest. For large motion, this can lead to relative motion of coil sensitivities, distortions associated with imaging gradients and B 0 field variations. This work accounts for the B 0 field change due to subject movement, and proposes a method for correcting tissue magnetic susceptibility-related distortion in prospective motion correction.

Materials and methods

The B 0 field shifts at the different head orientations were characterized. A volunteer performed large motion with prospective motion correction enabled. The acquired data were divided into multiple groups according to the object positions. The correction of B 0-related distortion was applied to each group of data individually via augmented sensitivity encoding with additionally integrated gradient nonlinearity correction.

Results

The relative motion of the gradients, B 0 field and coil sensitivities in prospective motion correction results in residual spatial distortion, blurring, and coil artifacts. These errors can be mitigated by the proposed method. Moreover, iterative conjugate gradient optimization with regularization provided superior results with smaller RMSE in comparison to standard conjugate gradient.

Conclusion

The combined correction of B 0-related distortion and gradient nonlinearity leads to a reduction of residual motion artifacts in prospective motion correction data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bydder M, Larkman DJ, Hajnal JV (2002) Detection and elimination of motion artifacts by regeneration of k-space. Magn Reson Med 47:677–686

    Article  CAS  PubMed  Google Scholar 

  2. Atkinson D, Hill DL, Stoyle PN, Summers PE, Clare S, Bowtell R, Keevil SF (1999) Automatic compensation of motion artifacts in MRI. Magn Reson Med 41:163–170

    Article  CAS  PubMed  Google Scholar 

  3. Batchelor PG, Atkinson D, Irarrazaval P, Hill DL, Hajnal J, Larkman D (2005) Matrix description of general motion correction applied to multishot images. Magn Reson Med 54:1273–1280

    Article  CAS  PubMed  Google Scholar 

  4. Thesen S, Heid O, Mueller E, Schad LR (2000) Prospective acquisition correction for head motion with image-based tracking for real-time fMRI. Magn Reson Med 44:457–465

    Article  CAS  PubMed  Google Scholar 

  5. Ward HA, Riederer SJ, Grimm RC, Ehman RL, Felmlee JP, Jack CR Jr (2000) Prospective multiaxial motion correction for fMRI. Magn Reson Med 43:459–469

    Article  CAS  PubMed  Google Scholar 

  6. Zaitsev M, Dold C, Sakas G, Hennig J, Speck O (2006) Magnetic resonance imaging of freely moving objects: prospective real-time motion correction using an external optical motion tracking system. NeuroImage 31:1038–1050

    Article  CAS  PubMed  Google Scholar 

  7. Maclaren J, Herbst M, Speck O, Zaitsev M (2013) Prospective motion correction in brain imaging: a review. Magn Reson Med 69:621–636

    Article  PubMed  Google Scholar 

  8. Maclaren J, Lee KJ, Luengviriya C, Speck O, Zaitsev M (2011) Combined prospective and retrospective motion correction to relax navigator requirements. Magn Reson Med 65:1724–1732

    Article  PubMed  Google Scholar 

  9. Banerjee S, Beatty PJ, Zhang JZ, Shankaranarayanan A (2004) Parallel and partial Fourier imaging with prospective motion correction. Magn Reson Med 69:421–433

    Article  Google Scholar 

  10. Atkinson D, Larkman DJ, Batchelor PG, Hill DL, Hajnal JV (2004) Coil-based artifact reduction. Magn Reson Med 52:825–830

    Article  PubMed  Google Scholar 

  11. Aksoy M (2008) Effect of Motion-Induced Altered Coil Sensitivity on Parallel Imaging Performance. In: Proceedings of the 16th scientific meeting, International Society for Magnetic Resonance in Medicine, Toronto, p 3111

  12. Luengviriya C (2010) Necessity of sensitivity profile correction in retrospective motion correction at 7T MRI. In: Proceedings of the ISMRM Workshop on Current Concepts of Motion Correction for MRI & MRM, Austria, p 10

  13. Bammer R, Aksoy M, Liu C (2007) Augmented generalized SENSE reconstruction to correct for rigid body motion. Magn Reson Med 57:90–102

    Article  PubMed  PubMed Central  Google Scholar 

  14. Polzin JA, Kruger DG, Gurr DH, Brittain JH, Riederer SJ (2004) Correction for gradient nonlinearity in continuously moving table MR imaging. Magn Reson Med 52:181–187

    Article  PubMed  Google Scholar 

  15. Hu HH, Madhuranthakam AJ, Kruger DG, Glockner JF, Riederer SJ (2005) Continuously moving table MRI with SENSE: application in peripheral contrast enhanced MR angiography. Magn Reson Med 54:1025–1031

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yarach U, Luengviriya C, Danishad A, Stucht D, Godenschweger F, Schulze P, Speck O (2015) Correction of gradient nonlinearity artifacts in prospective motion correction for 7T MRI. Magn Reson Med 73:1562–1569

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jezzard P, Balaban RS (1995) Correction for geometric distortion in echo planar images from B0 field variations. Magn Reson Med 34:65–73

    Article  CAS  PubMed  Google Scholar 

  18. Jezzard P, Clare S (1999) Sources of distortion in functional MRI data. Hum Brain Mapp 8:80–85

    Article  CAS  PubMed  Google Scholar 

  19. Ooi MB, Muraskin J, Zou X, Thomas WJ, Krueger S, Aksoy M, Bammer R, Brown TR (2013) Combined prospective and retrospective correction to reduce motion-induced image misalignment and geometric distortions in EPI. Magn Reson Med 69:803–811

    Article  PubMed  PubMed Central  Google Scholar 

  20. Speck O, Stadler J, Zaitsev M (2008) High resolution single-shot EPI at 7T. Magn Reson Mater Phy 21:73–86

    Article  Google Scholar 

  21. Sulikowska A, Wharton S, Glover PM, Gowland PA (2014) Will field shifts due to head rotation compromise motion correction. ISMRM-ESMRMB in Milan. http://cds.ismrm.org/protected/14MPresentations/0885/. Accessed 12 August 2015

  22. Fessler J, Sutton B (2003) Nonuniform fast Fourier transforms using min–max interpolation. IEEE Trans Signal 51:560–574

    Article  Google Scholar 

  23. Tao S, Trzasko JD, Shu Y, Huston J III, Bernstein MA (2015) Integrated image reconstruction and gradient nonlinearity correction. Magn Reson Med 74:1019–1031

    Article  PubMed  Google Scholar 

  24. Pruessmann KP, Weiger M, Bornert P, Boesiger P (2001) Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 46:638–651

    Article  CAS  PubMed  Google Scholar 

  25. Qu P, Luo J, Zhang B, Wang J, Shen GX (2007) An Improved iterative SENSE reconstruction method. Magn Reson Eng 31:44–50

    Google Scholar 

  26. Hansen PC (1998) Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion. SIAM, Philadelphia, p 247

    Book  Google Scholar 

  27. Knoll F, Schultz G, Bredies K, Gallichan D, Zaitsev M, Hennig J, Stollberger R (2013) Reconstruction of undersampled radial PatLoc imaging using total generalized variation. Magn Reson Med 70:40–52

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fessler J (2014) Image reconstruction toolbox. The University of Michigan, Ann Arbor, Michigan, USA. http://web.eecs.umich.edu/_fessler/irt/fessler.tgz. Accessed 12 April 2014

  29. Yoder DA, Zhao Y, Paschal CB, Fitzpatrick JM (2004) MRI simulator with object-specific field map calculations. Magn Reson Imaging 22:315–328

    Article  PubMed  Google Scholar 

  30. Maclaren J, Armstrong BSR, Barrows RT et al (2012) Measurement and correction of microscopic head motion during magnetic resonance imaging of the brain. PLoS ONE. doi:10.1371/journal.pone.0048088

    Google Scholar 

  31. Wey HY, Huang JC, Hsu YY, Lim K, Kuan WC, Chen CC, Liu HL (2006) Image quality testing using an oil-filled ACR MRI phantom at 3.0 T. In: Proceedings of the 48th scientific meeting, The American Association of Physicists in Medicine (AAPM), Orlando, p 5044

  32. Lu K, Liu TT, Bydder M (2008) Optimal phase difference reconstruction: comparison of two methods. Magn Reson Imaging 26:142–145

    Article  PubMed  Google Scholar 

  33. FMRIB Software Library, University of Oxford (2012). http://www.fmrib.ox.ac.uk/fsl. Accessed on 12 April 2015

  34. Robinson S, Jovicich J (2011) B0 mapping with multi-channel RF coils at high field. Magn Reson Med 66:976–988

    Article  PubMed  Google Scholar 

  35. Haase A, Frahm J, Matthaei D, Hanicke W, Merboldt KD (1986) FLASH imaging. Rapid NMR imaging using low flip-angle pulses. J Magn Reson 67:258–266

    CAS  Google Scholar 

  36. Archip N, Clatz O, Whalen S, Dimaio SP, Black PM, Jolesz FA, Golby A, Warfield SK (2008) Compensation of geometrical distortion effects on intraoperative magnetic resonance imaging for enhanced visualization in image-guided neurosurgery. Neurosurgery 62:209–216

    PubMed  Google Scholar 

  37. Sumanaweera T, Adler JR, Napel S, Glover GH (1994) Characterization of spatial distortion in magnetic resonance imaging and its implications for stereotaxic surgery. Neurosurgery 35:696–704

    Article  CAS  PubMed  Google Scholar 

  38. Vogel CR (1996) Non-convergence of the L-curve regularization parameter selection method. Inverse Prob 12(4):535–547

    Article  Google Scholar 

  39. Golub GH, Heath M, Wahba G (1979) Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21(2):215–223

    Article  Google Scholar 

  40. Galatsanos NP, Katsaggelos AK (1992) Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation. IEEE Trans Image Process 1(3):322–336

    Article  CAS  PubMed  Google Scholar 

  41. Walsh DO, Gmitro AF, Marcellin MW (2000) Adaptive reconstruction of phased array MR imagery. Magn Reson Med 43(5):682–690

    Article  CAS  PubMed  Google Scholar 

  42. Bernstein MA, Grgic M, Brosnan TJ, Pelc NJ (1994) Reconstruction of phase contrast, phase array multicoil data. Magn Reson Med 32:330–334

    Article  CAS  PubMed  Google Scholar 

  43. Robinson S, Horst S, Siegfried T (2014) A method for unwrapping highly wrapped multi-echo phase images at very high field: UMPIRE. Magn Reson Med 72:80–92

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hutton C, Bork A, Josephs O, Ceichmann R, Ashburner J, Turner R (2002) Image distortion correction in fMRI: a quantitative evaluation. Neuroimage 16(1):217–240

    Article  PubMed  Google Scholar 

  45. In MH, Speck O (2012) Highly accelerated PSF-mapping for EPI distortion correction with improved fidelity. MAGMA 25(3):183–192

    Article  PubMed  Google Scholar 

  46. Ooi MB, Krueger S, Muraskin J, Thomas WJ, Brown TR (2011) Echo-planar imaging with prospective slice-by-slice motion correction using active markers. Magn Reson Med 66(1):73–78

    Article  PubMed  PubMed Central  Google Scholar 

  47. Koch KM, Papademetris X, Rothman D, de Graaf RA (2006) Rapid calculations of susceptibility-induced magnetostatic field perturbations for in vivo magnetic resonance. Phys Med Biol 51:6381–6402

    Article  PubMed  Google Scholar 

  48. Jenkinson M, Wilson JL, Jezzard P (2004) Perturbation method for magnetic field calculations of nonconductive objects. Magn Reson Med 52:471–477

    Article  PubMed  Google Scholar 

  49. Boegle R, Maclaren J, Zaitsev M (2010) Combining prospective motion correction and distortion correction for EPI: towards a comprehensive correction of motion and susceptibility-induced artifacts. Magn Reson Mater Phy 23:263–273

    Article  Google Scholar 

  50. Ward HA, Riederer SJ, Jack CR (2002) Real-time auto shimming for echo planar timecourse imaging. Magn Reson Med 48:771–780

    Article  PubMed  Google Scholar 

  51. Hess AT, Dylan Tisdall M, Andronesi OC, Meintjes EM, van der Kouwe AJW (2011) Real-time motion and B0 corrected single voxel spectroscopy using volumetric navigators. Magn Reson Med 66(2):314–323

    Article  PubMed  PubMed Central  Google Scholar 

  52. Keating B, Ernst T (2012) Real-time dynamic frequency and shim correction for single-voxel MR spectroscopy. Magn Reson Med 68(5):1339–1345

    Article  PubMed  PubMed Central  Google Scholar 

  53. Shi Y, Vannesjo J, Miller K, Clare S (2015) Field-Map-Free First-Order Dynamic Shimming. In: Proceedings of the 23rd scientific meeting, International Society for Magnetic Resonance in Medicine, Toronto, p 0096

  54. Barmet C, De Zanche N, Pruessmann KP (2008) Spatiotemporal magnetic field monitoring for MR. Magn Reson Med 60:187–197

    Article  PubMed  Google Scholar 

  55. Duerst Y, Wilm BJ, Dietrich BE, Vannesjo SJ, Barmet C, Schmid T, Brunner DO, Pruessmann KP (2014) Real-time feedback for spatiotemporal field stabilization in MR systems. Magn Reson Med 73(2):884–893

    Article  PubMed  Google Scholar 

  56. Wilm BJ, Barmet C, Pavan M, Pruessmann KP (2011) Higher order reconstruction for MRI in the presence of spatiotemporal field perturbations. Magn Reson Med 65:1690–1701

    Article  PubMed  Google Scholar 

  57. Hansen MS, Atkinson D, Sorensen TS (2008) Cartesian SENSE and k-t SENSE reconstruction using commodity graphics hardware. Magn Reson Med 59(3):463–468

    Article  PubMed  Google Scholar 

  58. Zhang T, Pauly JM, Vasanawala SS, Lustig M (2013) Coil compression for accelerated imaging with cartesian sampling. Magn Reson Med 69:571–582

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The study was supported by the BMBF (Forschungscampus STIMULATE, 03FO16101A) and NIH (DA021146). We greatly appreciate all support from the BMMR Mo-Co team. C. Luengviriya thanks the Center for Advanced Studies of Industrial Technology, Kasetsart University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uten Yarach.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Ethical standard

The measurements on human subjects in this study have been approved by the local ethics committee and have therefore been performed in accordance with the ethical standards laid down in the Declaration of Helsinki. All involved subjects have given their informed consent before recruitment in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarach, U., Luengviriya, C., Stucht, D. et al. Correction of B 0-induced geometric distortion variations in prospective motion correction for 7T MRI. Magn Reson Mater Phy 29, 319–332 (2016). https://doi.org/10.1007/s10334-015-0515-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-015-0515-2

Keywords

Navigation