Skip to main content
Log in

In vivo proton magnetic resonance spectroscopic imaging of the healthy human brain at 9.4 T: initial experience

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Object

In this study, the feasibility of in vivo proton magnetic resonance spectroscopic imaging (1H MRSI) of the healthy human brain at a field strength of 9.4 T, using conventional acquisition techniques, is examined and the initial experience is summarized.

Materials and methods

MRSI measurements were performed on a 9.4 T MR scanner (Siemens, Erlangen, Germany) equipped with head-only gradient insert (AC84, Siemens) and custom-developed, 8-channel transmit/24-channel receive, and 16-channel transmit/31-channel receive coils. Spectra were acquired from the superior part of the human brain with a modified STEAM sequence. Spectral quantification was done with LCModel software.

Results

Reasonable quality and signal-to-noise ratio of the acquired spectra allowed reliable quantification of 12 metabolites (Cramer-Rao lower bounds < 20 %), some of which may be difficult to quantify at field strengths below 7 T due to overlapping resonances or low concentrations.

Conclusion

While further developments are necessary to minimize chemical shift displacement and homogeneity of the transmit field, it is demonstrated that in vivo 1H MRSI at a field strength of 9.4 T is possible. However, further studies applying up-to-date techniques to overcome high-field specific problems are needed in order to assess the potential gain in sensitivity that may be offered by MRSI at 9.4 T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pohmann R, Shajan G, Balla DZ (2011) Contrast at ultra-high field: relaxation times, magnetization transfer and phase in the rat brain at 16.4 T. Magn Reson Med 66:1572–1581

    Article  PubMed  Google Scholar 

  2. Tkac I, Gruetter R (2005) Methodology of 1H NMR spectroscopy of the human brain at very high magnetic fields. Appl Magn Reson 29(1):139–157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Marjanska M, Auerbach EJ, Valabregue R, de Moortele Van, Adriany G, Garwood M (2012) Localized 1H NMR spectroscopy in different regions of human brain in vivo at 7 T: T2 relaxation times and concentrations of cerebral metabolites. NMR Biomed 25:332–339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Henning A, Fuchs A, Murdoch JB, Boesinger P (2009) Slice-selective FID acquisition, localized by outer volume suppression (FIDLOVS) for 1H-MRSI of the human brain at 7 T with minimal signal loss. NMR Biomed 22:683–696

    Article  CAS  PubMed  Google Scholar 

  5. Tkac I, Oez G, Adriany G, Ugurbil K, Gruetter R (2009) In-vivo 1H NMR spectroscopy of the human brain at high magnetic fields: metabolite quantification at 4T vs. 7T. Magn Reson Med 62:868–879

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Mekle R, Mlynarik V, Gambarota G, Hergt M, Krueger G, Gruetter R (2009) MR spectroscopy of the human brain with enhanced signal intensity using ultrashort echo times on a clinical platform at 3T and 7T. Magn Reson Med 61:1279–1285

    Article  CAS  PubMed  Google Scholar 

  7. Yang S, Hu J, Kou Z, Yang Y (2008) Spectral simplification for resolved glutamate and glutamine measurement using a standard STEAM sequence with optimized timing parameters at 3, 4, 4.7, 7 and 9.4 T. Magn Reson Med 59:236–244

    Article  CAS  PubMed  Google Scholar 

  8. Choi C, Dimitrov I, Douglas D, Zhao C, Hawesa H, Ghose S, Tamminga CA (2009) In vivo detection of serine in the human brain by proton magnetic resonance spectroscopy (1H MRS) at 7 T. Magn Reson Med 62:1042–1046

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Banerjee A, Ganji S, Hulsey K, Dimitrov I, Maher E, Ghose S, Tamminga C, Choi C (2012) Measurement of glycine in gray and white matter in the human brain in vivo by 1H MRS at 7 T. Magn Reson Med 68:325–331

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Pan JW, Avdievich N, Hetherington HP (2010) J-refocused coherence transfer spectroscopic imaging at 7 T in human brain. Magn Reson Med 64:1237–1246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Deelchand DK, Van de Moortele PF, Adriany G, Iltis I, Andersen P, Strupp JP, Vaughan T, Ugurbil K, Henry PG (2010) In-vivo 1H NMR spectroscopy of the human brain at 9.4 T: initial results. J Magn Reson 206:74–80

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Tkac I, Andersen P, Adriany G, Merkle H, Ugurbil K, Gruetter R (2001) In vivo 1H NMR spectroscopy of the human brain at 7T. Magn Reson Med 46:451–456

    Article  CAS  PubMed  Google Scholar 

  13. Boer VO, Siero JCW, Hoogduin H, van Gorp JS, Luijten PR, Klomp DWJ (2011) High-field MRS of the human brain at short TE and TR. NMR Biomed 24:1081–1088

    Article  PubMed  Google Scholar 

  14. Bogner W, Gruber S, Trattnig S, Chmielnik M (2012) High-resolution mapping of human brain metabolites by free induction decay 1H MRSI at 7T. NMR Biomed 25:873–882

    Article  CAS  PubMed  Google Scholar 

  15. Shajan G, Kozlov M, Hoffman J, Turner R, Scheffler K, Pohmann R (2013) A 16-channel dual-row transmit array in combination with a 31-element receive array for human brain imaging at 9.4 T. Magn Reson Med 71:870–879

    Article  Google Scholar 

  16. Ogg RJ, Kingsley RB, Taylor JS (1994) WET, a T1 and B1 insensitive water suppression method for in vivo localized 1H NMR spectroscopy. J Magn Reson B 104(1):1–10

    Article  CAS  PubMed  Google Scholar 

  17. Yarnykh VL (2007) Actual flip-angle imaging in the pulsed steady state: a method for rapid three-dimensional mapping of the transmitted radiofrequency field. Magn Reson Med 57:192–200

    Article  PubMed  Google Scholar 

  18. Pohmann R, Scheffler K (2013) A theoretical and experimental comparison of different techniques for B1 mapping at very high fields. NMR Biomed 26:265–275

    Article  PubMed  Google Scholar 

  19. De Graaf RA (2007) Radiofrequency Pulses. In: De Graaf RA (ed) In vivo NMR spectroscopy, 2nd edn. Wiley, Chichester, pp 233–293

    Chapter  Google Scholar 

  20. Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679

    Article  CAS  PubMed  Google Scholar 

  21. Govindaraju V, Young K, Maudsley AA (2000) Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed 13:129–153

    Article  CAS  PubMed  Google Scholar 

  22. Tkac I (2008) Refinement of simulated basis set for LCModel analysis. In: Proceedings of the 16th scientific meeting, International Society for Magnetic Resonance in Medicine, Toronto, p 1624

  23. Ernst T, Kreis R, Ross BD (1993) Absolute quantitation of water and metabolites in the human brain. I. Compartments and water. J Magn Reson Ser B 102:1–8

    Article  CAS  Google Scholar 

  24. Hong ST, Balla DZ, Shajan G, Choi C, Ugurbil K, Pohmann R (2011) Enhanced neurochemical profile of the rat brain using in vivo 1H NMR spectroscopy at 16.4 T. Magn Reson Med 65:28–34

    Article  CAS  PubMed  Google Scholar 

  25. Terpstra M, Ugurbil K, Gruetter R (2002) Direct in vivo measurement of human cerebral GABA concentration using MEGA-editing at 7T. Magn Reson Med 47:1009–1012

    Article  CAS  PubMed  Google Scholar 

  26. Andreychenko A, Boer VO, de Castro CSA, Luijten PR, Klomp DWJ (2012) Efficient spectral editing at 7T: GABA detection with MEGA-sLASER. Magn Reson Med 68:1018–1025

    Article  CAS  PubMed  Google Scholar 

  27. Helms G (2000) A precise and user-independent quantification technique for regional comparison of single volume proton MR spectroscopy of the human brain. NMR Biomed 13:398–406

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Li SJ (1998) Differentiation of metabolic concentrations between gray matter and white matter of human brain by in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 39:28–33

    Article  CAS  PubMed  Google Scholar 

  29. Pan JW, Lo KM, Hetherington HP (2012) Role of high order and degree B0 shimming for spectroscopic imaging of the human brain at 7 Tesla. Magn Reson Med 68:1007–1017

    Article  PubMed Central  PubMed  Google Scholar 

  30. Hetherington HP, Chu WJ, Gonen O, Pan JW (2006) Robust fully automated shimming of the human brain for high-field 1H spectroscopic imaging. Magn Reson Med 56:26–33

    Article  CAS  PubMed  Google Scholar 

  31. Shah S, Kellerman P, Greiser A, Weale PJ, Zuehlsdorff S, Jerecic R (2009) Rapid fieldmap estimation for cardiac shimming. In: Proceedings of the 17th scientific meeting, International Society for Magnetic Resonance in Medicine, Honolulu, Hawaii, USA, p 566

  32. Gruetter R (1993) Automatic, localized in vivo adjustment of all first- and second-order shim coils. Magn Reson Med 29:804–811

    Article  CAS  PubMed  Google Scholar 

  33. Gruetter R, Tkac I (2000) Field mapping without reference scan using asymmetric echo-planar techniques. Magn Reson Med 43:319–323

    Article  CAS  PubMed  Google Scholar 

  34. Zhong X, Lyubich YM, De Vito T, Shah S, Knight-Scott J (2012) Improving in vivo 1H-MRS with robust automated shim techniques: a comparison study of FASTESTMAP and GRESHIM. In: Proceedings of the 20th scientific meeting, International Society for Magnetic Resonance in Medicine, Melbourne, Victoria, Australia, p 4397

  35. Zhong X, Lyubich YM, De Vito T, Shah S, Knight-Scott J (2013) Quantitative comparison of shim algorithms for in vivo 1H-MRS. In: Proceedings of the 21th scientific meeting, International Society for Magnetic Resonance in Medicine, Salt Lake City, Utah, USA, p 3988

  36. Avdievich NI, Pan JW, Beahring JM, Spencer DD, Hetherington HP (2009) Short echo spectroscopic imaging of the human brain at 7 T using transceiver arrays. Magn Reson Med 62:17–25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Andronesi OC, Gagoski BA, Sorensen AG (2012) Neurologic 3D MR spectroscopic imaging with low-power adiabatic pulses and fast spiral acquisition. Radiology 262(2):647–661

    Article  PubMed Central  PubMed  Google Scholar 

  38. Hetherington HP, Avdievich NI, Kuznetsov AM, Pan JW (2010) RF shimming for spectroscopic localization in the human brain at 7 T. Magn Reson Med 63:9–19

    PubMed Central  PubMed  Google Scholar 

  39. Boer VO, van Lier ALHMW, Hoogduin JM, Wijnen JP, Luijten PR, Klomp DWJ (2011) 7-T 1H MRS with adiabatic refocusing at short TE using radiofrequency focusing with a dual-channel volume transmit coil. NMR Biomed 24:1038–1046

    Article  CAS  PubMed  Google Scholar 

  40. Emir UE, Auerbach EJ, Van de Moortele PF, Marjanska M, Ugurbil K, Terpstra M, Tkac I, Oez G (2012) Regional neurochemical profiles in the human brain measured by 1H MRS at 7 T using local B1 shimming. NMR Biomed 25:152–160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Boer VO, Klomp DWJ, Juchem C, Luijten PR, de Graaf RA (2012) Multislice 1H MRSI of the human brain at 7 T using dynamic B0 and B1 shimming. Magn Reson Med 68:662–670

    Article  PubMed Central  PubMed  Google Scholar 

  42. Zhu H, Soher B, Ouwerkerk R, Schaer M, Barker PB (2013) Spin-echo magnetic resonance spectroscopic imaging at 7T with frequency-modulated refocusing pulses. Magn Reson Med 69:1217–1225

    Article  PubMed Central  PubMed  Google Scholar 

  43. Tkac I, Starcuk Z, Choi IY, Gruetter R (1999) In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time. Magn Reson Med 41:649–656

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was founded (in part) by the Helmholtz Alliance ICEMED—Imaging and Curing Environmental Metabolic Diseases, through the Initiative and Networking Found of the Helmholtz Association.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

All volunteer studies have been approved by the local ethics committee and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Informed consent

All in vivo measurements described in this study were conducted exclusively on healthy volunteers. All volunteers gave their informed consent prior to their inclusion in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz L. Chadzynski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chadzynski, G.L., Pohmann, R., Shajan, G. et al. In vivo proton magnetic resonance spectroscopic imaging of the healthy human brain at 9.4 T: initial experience. Magn Reson Mater Phy 28, 239–249 (2015). https://doi.org/10.1007/s10334-014-0460-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-014-0460-5

Keywords

Navigation