Development and performance of a 129-GHz dynamic nuclear polarizer in an ultra-wide bore superconducting magnet

  • Lloyd L. Lumata
  • Richard Martin
  • Ashish K. Jindal
  • Zoltan Kovacs
  • Mark S. Conradi
  • Matthew E. Merritt
Research Article

Abstract

Objective

We sought to build a dynamic nuclear polarization system for operation at 4.6 T (129 GHz) and evaluate its efficiency in terms of 13C polarization levels using free radicals that span a range of ESR linewidths.

Materials and methods

A liquid helium cryostat was placed in a 4.6 T superconducting magnet with a 150-mm warm bore diameter. A 129-GHz microwave source was used to irradiate 13C enriched samples. Temperatures close to 1 K were achieved using a vacuum pump with a 453-m3/h roots blower. A hyperpolarized 13C nuclear magnetic resonance (NMR) signal was detected using a saddle coil and a Varian VNMRS console operating at 49.208 MHz. Samples doped with free radicals BDPA (1,3-bisdiphenylene-2-phenylallyl), trityl OX063 (tris{8-carboxyl-2,2,6,6-benzo(1,2-d:4,5-d)-bis(1,3)dithiole-4-yl}methyl sodium salt), galvinoxyl ((2,6-di-tert-butyl-α-(3,5-di-tert-butyl-4-oxo-2,5-cyclohexadien-1-ylidene)-p-tolyloxy), 2,2-diphenylpicrylhydrazyl (DPPH) and 4-oxo-TEMPO (4-Oxo-2,2,6,6-tetramethyl-1-piperidinyloxy) were assayed. Microwave dynamic nuclear polarization (DNP) spectra and solid-state 13C polarization levels for these samples were determined.

Results

13C polarization levels close to 50 % were achieved for [1-13C]pyruvic acid at 1.15 K using the narrow electron spin resonance (ESR) linewidth free radicals trityl OX063 and BDPA, while 10–20 % 13C polarizations were achieved using galvinoxyl, DPPH and 4-oxo-TEMPO.

Conclusion

At this field strength free radicals with smaller ESR linewidths are still superior for DNP of 13C as opposed to those with linewidths that exceed that of the 1H Larmor frequency.

Keywords

Nuclear magnetic resonance Electron spin resonance Free radicals Hyperpolarization 

References

  1. 1.
    Slichter CP (1989) Principles of magnetic resonance. Springer, New YorkGoogle Scholar
  2. 2.
    Overhauser AW (1953) Polarization of nuclei in metals. Phys Rev 92:411–415CrossRefGoogle Scholar
  3. 3.
    Carver TR, Slichter CP (1956) Experimental verification of the overhauser nuclear polarization effect. Phys Rev 102:975–981CrossRefGoogle Scholar
  4. 4.
    Abragam A, Goldman M (1978) Principles of dynamic nuclear polarization. Rep Prog Phys 41:395–467CrossRefGoogle Scholar
  5. 5.
    Crabb DG, Meyer W (1997) Solid polarized targets for nuclear and particle physics experiments. Annu Rev Nucl Part Sci 47:67–109CrossRefGoogle Scholar
  6. 6.
    Ni QZ, Daviso E, Can TV, Markhasin E, Jawla SK, Swager TM, Temkin RJ, Herzfeld J, Griffin RG (2013) High frequency dynamic nuclear polarization. Acc Chem Res 46:1933–1941CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Ardenkjær-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L, Lerche MH, Servin R, Thaning M, Golman K (2003) Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc Natl Acad Sci USA 100:10158–10163CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Gallagher FA, Kettunen MI, Brindle KM (2009) Biomedical applications of hyperpolarized 13C magnetic resonance imaging. Prog Nucl Magn Reson Spectrosc 55:285–295CrossRefGoogle Scholar
  9. 9.
    Kurhanewicz J, Vigneron DB, Brindle K, Chekmenev EY, Comment A, Cunningham CH, DeBerardinis RJ, Green GG, Leach MO, Rajan SS, Rizi RR, Ross BD, Warren WS, Malloy CR (2011) Analysis of cancer metabolism by imaging hyperpolarized nuclei: prospects for translation to clinical research. Neoplasia 13:81–97PubMedCentralPubMedGoogle Scholar
  10. 10.
    Meyer W, Heckmann J, Hess C, Radtke E, Reicherz G, Triebwasser L, Wang L (2011) Dynamic polarization of 13C nuclei in solid 13C labeled pyruvic acid. Nucl Instrum Methods Phys Res, Sect A 631:1–5CrossRefGoogle Scholar
  11. 11.
    Johannesson H, Macholl S, Ardenkjaer-Larsen JH (2009) Dynamic nuclear polarization of [1-13C]pyruvic acid at 4.6 tesla. J Magn Reson 197:167–175CrossRefPubMedGoogle Scholar
  12. 12.
    Heckmann J, Meyer W, Radtke E, Reicherz G, Goertz S (2006) Electron spin resonance and its implication on the maximum nuclear polarization of deuterated solid target materials. Phys Rev B 74:134418CrossRefGoogle Scholar
  13. 13.
    Lumata L, Merritt ME, Kovacs Z (2013) Influence of deuteration in the glassing matrix on 13C dynamic nuclear polarization. Phys Chem Chem Phys 15:7032–7035CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Kurdzesau F, van den Brandt B, Comment A, Hautle P, Jannin S, van der Klink JJ, Konter JA (2008) Dynamic nuclear polarization of small-labeled molecules in frozen water–alcohol solutions. J Phys D Appl Phys 141:155506CrossRefGoogle Scholar
  15. 15.
    Comment A, van der Brandt B, Uffman K, Kurdzesau F, Jannin S, Konter JA, Hautle P, Wenkebach WT, Gruetter R, van der Klink JJ (2007) Design and performance of a DNP prepolarizer coupled to a rodent MRI scanner. Concept Magn Reson Part B 31:255–269CrossRefGoogle Scholar
  16. 16.
    Jannin S, Comment A, Kurdzesau F, Konter JA, Hautle P, van der Brandt B, van der Klink JJ (2008) A 140 GHz prepolarizer for dissolution dynamic nuclear polarization. J Chem Phys 128:241102CrossRefPubMedGoogle Scholar
  17. 17.
    Batel M, Krajewski M, Weiss K, With O, Dapp A, Hunkeler A, Gimersky M, Pruessmann KP, Boesiger P, Meier BH, Kozerke S, Ernst M (2012) A multisample 94 GHz dissolution dynamic-nuclear-polarization system. J Magn Reson 214:166–174CrossRefPubMedGoogle Scholar
  18. 18.
    Crémillieux Y, Goutailler F, Montcel B, Grand D, Vermeulen G, Wolf PE (2012) A super-wide bore DNP system for multiple sample preparation: cryogenic performance and polarization at low temperature. Appl Magn Reson 43:167–180CrossRefGoogle Scholar
  19. 19.
    Ardenkjaer-Larsen JH, Leach AM, Clarke N, Urbahn J, Anderson D, Skloss TW (2011) Dynamic nuclear polarization polarizer for sterile use intent. NMR Biomed 24:927–932CrossRefPubMedGoogle Scholar
  20. 20.
    Lumata L, Ratnakar SJ, Jindal A, Merritt M, Malloy C, Sherry AD, Kovacs Z (2011) BDPA: an efficient polarizing agent for fast dissolution dynamic nuclear polarization NMR spectroscopy. Chem Eur J 17:10825–10827CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Lumata LL, Merritt ME, Malloy CR, Sherry AD, van Tol J, Song L, Kovacs Z (2013) Dissolution DNP-NMR spectroscopy using galvinoxyl as a polarizing agent. J Magn Reson 227:14–19CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Lumata L, Merritt M, Khemtong C, Ratnakar SJ, van Tol J, Yu L, Song L, Kovacs Z (2012) The efficiency of DPPH as a polarising agent for DNP-NMR spectroscopy. RSC Adv 2:12812–12817CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Conradi MS (1993) Low-temperature NMR techniques. Concepts Magn Reson 5:243–262CrossRefGoogle Scholar
  24. 24.
    Kodibagkar V, Conradi MS (2000) Remote tuning of NMR probe circuits. J Magn Reson 144:53–57CrossRefPubMedGoogle Scholar
  25. 25.
    Thomas Jefferson National Lab, Userweb Helium vapor pressure vs temperature. https://userweb.jlab.org/~ckeith/TOOLS/HeVaporTable.html
  26. 26.
    Jannin S, Bornet A, Melzi R, Bodenhausen G (2012) High field dynamic nuclear polarization at 6.7 T: carbon-13 polarization above 70 % within 20 min. Chem Phys Lett 549:99–102CrossRefGoogle Scholar
  27. 27.
    Lumata L, Merritt ME, Malloy CR, Sherry AD, Kovacs Z (2012) Impact of Gd3+ on DNP of [1-13C]pyruvate doped with trityl OX063, BDPA, or 4-oxo-TEMPO. J Phys Chem A 116:5129–5138CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Lumata L, Merritt ME, Malloy C, Sherry AD, Kovacs Z (2012) Fast dissolution dynamic nuclear polarization NMR of 13C-enriched 89Y-DOTA complex: experimental and theoretical considerations. Appl Magn Reson 43:69–79CrossRefGoogle Scholar
  29. 29.
    Lumata L, Jindal AK, Merritt ME, Malloy CR, Sherry AD, Kovacs Z (2011) DNP by thermal mixing under optimized conditions yields > 60,000-fold enhancement of 89Y NMR signal. J Am Chem Soc 133:8673–8680CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Borghini M (1968) Spin-temperature model of nuclear dynamic polarization using free radicals. Phys Rev Lett 20:419–421CrossRefGoogle Scholar
  31. 31.
    Jannin S, Comment A, van der Klink JJ (2012) Dynamic nuclear polarization by thermal mixing under partial saturation. Appl Magn Reson 43:59–68CrossRefGoogle Scholar
  32. 32.
    Lumata L, Kovacs Z, Malloy C, Sherry AD, Merritt M (2011) The effect of 13C enrichment in the glassing matrix on dynamic nuclear polarization of [1-13C]pyruvate. Phys Med Biol 56:N85–N92CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Chattergoon N, Martínez-Santiesteban F, Handler WB, Ardenkjær-Larsen JH, Scholl TJ (2013) Field dependence of T1 for hyperpolarized [1-13C]pyruvate. Contrast Media Mol Imaging 8:57–62PubMedGoogle Scholar
  34. 34.
    Cheng T, Mishkovsky M, Bastiaansen JAM, Ouari O, Hautle P, Tordo P, van der Brandt B, Comment A (2013) Automated transfer and injection of hyperpolarized molecules with polarization measurement prior to in vivo NMR. NMR Biomed 26:1582–1588CrossRefPubMedGoogle Scholar
  35. 35.
    Bornet A, Melzi R, Linde AJP, Hautle P, van der Brandt B, Jannin S, Bodenhausen G (2013) Boosting dissolution dynamic nuclear polarization by cross polarization. J Phys Chem Lett 4:111–114CrossRefGoogle Scholar
  36. 36.
    Gordon JW, Fain SB, Rowland IJ (2012) Effect of lanthanide ions on dynamic nuclear polarization enhancement and liquid-state T 1 relaxation. Magn Reson Med 68:1949–1952CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Waldner LF, Chen A, Mander W, Scholl T, McKenzie C (2012) Optimisation of dynamic nuclear polarisation of [1-13C] pyruvate by addition of gadolinium-based contrast agents. J Magn Reson 223:85–89CrossRefGoogle Scholar

Copyright information

© ESMRMB 2014

Authors and Affiliations

  • Lloyd L. Lumata
    • 1
  • Richard Martin
    • 1
  • Ashish K. Jindal
    • 1
  • Zoltan Kovacs
    • 1
  • Mark S. Conradi
    • 2
  • Matthew E. Merritt
    • 1
    • 3
    • 4
  1. 1.Advanced Imaging Research CenterUniversity of Texas Southwestern Medical CenterDallasUSA
  2. 2.Department of PhysicsWashington UniversitySt. LouisUSA
  3. 3.Departments of Biomedical Engineering and Molecular BiophysicsUniversity of Texas Southwestern Medical CenterDallasUSA
  4. 4.Department of BioengineeringUniversity of Texas at DallasRichardsonUSA

Personalised recommendations