Skip to main content

Advertisement

Log in

Motion correction of multi-contrast images applied to T1 and T2 quantification in cardiac MRI

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Object

The ability to manipulate image contrast and thus to obtain complementary information is one of the main advantages of MRI. Motion consistency within the whole data set is a key point in the context of multi contrast imaging. In cardiac and abdominal MRI, the acquisition strategy uses multiple breath-holds and often relies on acceleration methods that inherently suffer from a signal-to-noise ratio loss. The aim of this work is to propose a free-breathing multi-contrast acquisition and reconstruction workflow to improve image quality and the subsequent data analysis.

Materials and methods

We extended a previously proposed motion-compensated image reconstruction method for multi-contrast imaging. Shared information throughout the imaging protocol is now exploited by the image reconstruction in the form of an additional constraint based on image gradient sparsity. This constraint helps to minimize the amount of data needed for efficient non-rigid motion correction. T1 and T2 weighted images were reconstructed from free-breathing acquisitions in 4 healthy volunteers and in a phantom. The impact of multi-contrast motion correction was evaluated in a phantom in terms of precision and accuracy of T1 and T2 quantification.

Results

In the phantom, the proposed method achieved an accuracy of 97.5 % on the quantified parameters against 88.0 % before motion correction. In volunteers, motion inconsistency in T1 and T2 quantification were noticeably reduced within 5 min of free-breathing acquisition.

Conclusion

An efficient, free-breathing, multi-contrast imaging method has been demonstrated that does not require prior assumptions about contrast and that is applicable to a wide range of examinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BH:

Breath-hold

FB:

Free-breathing

GRICS:

Generalized reconstruction by inversion of a coupled system

MC-GRICS:

Multi-contrast GRICS

FSE:

Fast spin echo (pulse sequence)

ME-FSE:

Multi-echo FSE (pulse sequence)

SMART1Map:

Saturation method using adaptive recovery times for T1 mapping (pulse sequence)

TEeff :

Effective echo time

ESP:

Echo spacing

ETL:

Echo train length

TI:

Inversion time

TD:

Trigger delay

References

  1. Cai JM, Hatsukami TS, Ferguson MS, Small R, Polissar NL, Yuan C (2002) Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging. Circulation 106:1368–1373

    Article  PubMed  Google Scholar 

  2. Kellman P, Chung YC, Simonetti OP, McVeigh ER, Arai AE (2005) Multicontrast delayed enhancement provides improved contrast between myocardial infarction and blood pool. Magn Reson Med 22(5):605–613

    Google Scholar 

  3. Marie PY, Angioï M, Carteaux JP, Escanye JM, Mattei S, Tzvetanov K, Claudon O, Hassan N, Danchin N, Karcher G, Bertrand A, Walker PM, Villemot JP (2001) Detection and prediction of acute heart transplant rejection with the myocardial T2 determination provided by a black-blood magnetic resonance imaging sequence. J Am Coll Cardiol 37(3):825–831

    Article  CAS  PubMed  Google Scholar 

  4. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962

    Article  CAS  PubMed  Google Scholar 

  5. Lai P, Fung MM, Vasanawala SS, Brau AC (2012) Single breathhold three-dimensional cardiac cine MRI with whole ventricular coverage and retrospective cardiac gating using kat ARC. J Cardiovasc Magn Reson 14(1):69

    Article  Google Scholar 

  6. Lustig M, Donoho DL, Santos JM, Pauly JM (2008) Compressed sensing MRI. IEEE Trans Med Imag 25(2):72–82

    Google Scholar 

  7. Doneva M, Börnert P, Eggers H, Stehning C, Sénégas J, Mertins A (2010) Compressed sensing reconstruction for magnetic resonance parameter mapping. Magn Reson Med 64:1114–1120

    Article  PubMed  Google Scholar 

  8. Wu B, Millane RP, Watts R, Bones PJ (2011) Prior estimate-based compressed sensing in parallel MRI. Magn Reson Med 65:83–95

    Article  PubMed  Google Scholar 

  9. Batchelor PG, Atkinson D, Irarrazaval P, Hill DLG, Hajnal J, Larkman D (2005) Matrix description of general motion correction applied to multishot images. Magn Reson Med 54(5):1273–1280

    Article  CAS  PubMed  Google Scholar 

  10. Kellman P, Viallon M, Chefd’hotel C, Stemmer A, Croisille P (2009) Improved image reconstruction incorporating non-rigid motion correction for cardiac MRI using BLADE acquisition. J Card Magn Reson 11:227

    Article  Google Scholar 

  11. Odille F, Vuissoz PA, Marie PY, Felblinger J (2008) Generalized reconstruction by inversion of coupled systems (GRICS) applied to free-breathing MRI. Magn Reson Med 60(1):146–157

    Article  PubMed  Google Scholar 

  12. Usman M, Atkinson D, Odille F, Kolbitsch C, Vaillant G, Schaeffter T, Batchelor PG, Prieto C (2013) Motion corrected compressed sensing for free-breathing dynamic cardiac MRI. Magn Reson Med 70(2):504–516

    Article  PubMed  Google Scholar 

  13. Lohezic M, Menini A, Escanyé JM, Marie PY, Marie PY, Mandry D, Vuissoz PA, Felblinger J (2011) Free-breathing myocardial T2 measurements at 1.5 T. J Card Magn Reson 13(1):11

    Article  Google Scholar 

  14. Filipovic M, Vuissoz P, Codreanu A, Claudon M, Felblinger J (2011) Motion compensated generalized reconstruction for free-breathing dynamic contrast-enhanced MRI. Magn Reson Med 65(3):812–822

    Article  CAS  PubMed  Google Scholar 

  15. Menini A, Clique H, Beaumont M, Felblinger J, Odille F (2012) Motion Correction for 3D T1 Mapping using GRICS: Phantom Validation. In: Proceedings of the 20th scientific meeting, International Society for Magnetic Resonance in Medicine, Melbourne, p 2391

  16. Haldar JP, Wedeen VJ, Nezamzadeh M, Dai G, Weiner MW, Schuff N, Liang ZP (2012) Improved diffusion imaging through SNR-enhancing joint reconstruction. Magn Reson Med 69(1):277–289

    Article  PubMed Central  PubMed  Google Scholar 

  17. Junzhou H, Chen C, Leon A (2012) Fast Multi-contrast MRI Reconstruction. MICCAI 7510:281–288

    Google Scholar 

  18. Ma D, Gulani V, Seiberlich N, Liu K, Sunshine JL, Duerk JL, Griswold MA (2013) Magnetic resonance fingerprinting. Nature 495(7440):187–192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Bilgic B, Goyal VK, Adalsteinsson E (2011) Multi-contrast reconstruction with Bayesian compressed sensing. Magn Reson Med 66:1601–1615

    Article  PubMed Central  PubMed  Google Scholar 

  20. Menini A, Vuissoz PA, Felblinger J, Odille F (2012) Joint reconstruction of image and motion in MRI: implicit regularization using an adaptive 3D mesh. MICCAI 7510:264–271

    Google Scholar 

  21. Odille F, Cîndea N, Mandry D, Pasquier C, Vuissoz PA, Felblinger J (2008) Generalized MRI reconstruction including elastic physiological motion and coil sensitivity encoding. Magn Reson Med 9:1401–1411

    Article  Google Scholar 

  22. Engl HW, Kunisch K, Neubauer A (1989) Convergence rates for Tikhonov regularisation of nonlinear ill-posed problems. Inverse Probl 5:523

    Article  Google Scholar 

  23. Slavin GS, Stainsby JA (2013) True T1 Mapping with SMART1Map (saturation method using adaptive recovery times for cardiac T1 mapping): a comparison with MOLLI. J Card Magn Reson 15(1):3

    Article  Google Scholar 

  24. Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP (2004) Modified look-locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med 52(1):141–146

    Article  PubMed  Google Scholar 

  25. Stainsby JA, Slavin GS (2013) Myocardial T1 mapping using SMART1Map: initial in vivo experience. J Card Magn Reson 15(1):13

    Article  Google Scholar 

  26. Sacolick LI, Sun L, Vogel MW, Dixon WT, Hancu I (2011) Fast radiofrequency flip angle calibration by Bloch-Siegert shift. Magn Reson Med 66(5):1333–1338

    Article  PubMed  Google Scholar 

  27. Nehrke K, Börnert P (2012) DREAM—a novel approach for robust, ultrafast, multislice B1 mapping. Magn Reson Med 68(5):1517–1526

    Article  PubMed  Google Scholar 

  28. Ying L, Liu B, Steckner MC, Wu G, Wu M, Li SJ (2008) A statistical approach to SENSE regularization with arbitrary k-space trajectories. Magn Reson Med 60(2):414–421

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Marine Beaumont for her helpful discussions about T1 mapping and Jonathan Sperl for his comments on sparse constraint for multi-contrast imaging. The Lorraine region and the European Regional Development Fund are acknowledged for co-funding the system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Freddy Odille.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menini, A., Slavin, G.S., Stainsby, J.A. et al. Motion correction of multi-contrast images applied to T1 and T2 quantification in cardiac MRI. Magn Reson Mater Phy 28, 1–12 (2015). https://doi.org/10.1007/s10334-014-0440-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-014-0440-9

Keywords

Navigation