Skip to main content
Log in

Characterizing cerebral oxygen metabolism employing oxygen-17 MRI/MRS at high fields

  • Review Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

This article provides a comprehensive overview of oxygen (17O) magnetic resonance spectroscopy and imaging, including the advantages and challenges offered by the different methods developed thus far. The physiological role and relevance of oxygen, and its participation in aerobic metabolism, are addressed to emphasize the importance of the investigations and the efforts related to these developments. Furthermore, a number of methods employed in the determination of the cerebral metabolic rate of oxygen in neural cells will be presented, focusing primarily on methodologies enabling absolute quantification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

MRS:

Magnetic resonance spectroscopy

Γ :

Gyromagnetic ratio

T 1 :

Longitudinal relaxation time

T 2 :

Transverse relaxation time

T *2 :

Effective transverse relaxation time

ω :

Larmor frequency

τ c :

Rotational correlation time

B 0 :

Static magnetic field strength

SNR:

Signal-to-noise ratio

TE:

Echo time

TCA:

Tri-carboxylic acid

ATP:

Adenosine tri-phosphate

ADP:

Adenosine di-phosphate

CBF:

Cerebral blood flow

CSI:

Chemical shift imaging

BBB:

Brain–blood barrier

CMRO2 :

Cerebral metabolic rate of oxygen consumption

PET:

Positron emission tomography

C a(t):

Time-dependent H 172 O concentration in excess of the natural abundance, in arterial blood

C b(t):

Time-dependent H 172 O concentration in excess of the natural abundance, in brain tissue

C v(t):

Time-dependent H 172 O concentration in excess of the natural abundance, in venous blood

K G :

H 172 O gain factor from blood diffusion

K L :

H 172 O factor, lost by diffusion to blood or leading to chemical shift due to a metabolic chemical conversion

CSF:

Cerebrospinal fluid

OEF:

Oxygen extraction fraction

PFC:

Perfluorocarbon

UTE:

Ultra short echo time

TPI:

Twisted projection imaging

TSL:

Spin-lock time

3D-DAPR:

Density-adapted 3D radial pulse

ASL:

Arterial spin labeling

FISP:

Fast imaging with steady state precession

NADH:

Nicotinamide adenine dinucleotide hydride

FADH2 :

Flavin adenine dinucleotide

OXPHOS:

Oxidative phosphorylation

References

  1. Wilson DF, Rumsey WL, Green TJ, Vanderkooi JM (1988) The oxygen dependence of mitochondrial oxidative phosphorylation measured by a new optical method for measuring oxygen concentration. J Biol Chem 263(6):2712–2718

    CAS  PubMed  Google Scholar 

  2. Christen T, Bolar DS, Zaharchuk G (2012) Imaging brain oxygenation with MRI using blood oxygenation approaches: methods, validation, and clinical applications. AJNR Am J Neuroradiol. doi:10.3174/ajnr.A307023456

    PubMed  Google Scholar 

  3. Brown JM, Wilson WR (2004) Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 4:437–447

    Article  CAS  PubMed  Google Scholar 

  4. Kidwell CS, Alger JR, Saver JL (2003) Beyond mismatch evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging. Stroke 34:2729–2735

    Article  PubMed  Google Scholar 

  5. Röther J, Schellinger PD, Gass A, Siebler M, Villringer A, Fiebach JB, Fiehler J, Jansen O, Kucinski T, Schoder V, Szabo K, Junge-Hülsing GJ, Hennerici M, Zeumer H, Sartor K, Weiller C, Hacke W (2002) Effect of intravenous thrombolysis on MRI parameters and functional outcome in acute stroke. Stroke 33:2438–2445

    Article  PubMed  Google Scholar 

  6. Alder F, Yu FC (1951) On the spin and magnetic moment of 17O. Phy Rev 81:1067–1068

    Article  CAS  Google Scholar 

  7. Gerothanassis IP (2010) Oxygen-17 NMR spectroscopy: basic principles and applications (Part I). Progr NMR Spectr 56:95–197

    Article  CAS  Google Scholar 

  8. Gerothanassis IP (2010) Oxygen-17 NMR spectroscopy: basic principles and applications (Part II). Progr NMR Spectr 57:1–110

    Article  CAS  Google Scholar 

  9. Mateescu GD, Yvars GM, LaManna JC, Lust WD, Sudilovsky D (1990) Oxygen-17 MRS: in vivo evaluation of water uptake and residence time in the mouse brain after injection of O-17 labeled water. In: Proceedings of the 17th scientific meeting, International Society for Magnetic Resonance in Medicine, Honolulu, p 1236

  10. Arai T, Mori K, Nakao S, Watanabe K, Kito K, Aoki M, Mori H, Morikawa S, Inubushi T (1991) In vivo oxygen-17 nuclear magnetic resonance for the estimation of cerebral blood flow and oxygen consumption. Biochem Biophy Res Commun 179:954–961

    Article  CAS  Google Scholar 

  11. Pekar J, Ligeti L, Ruttner Z, Lyon RC, Sinnwell TM, van Gelderen P, Fiat D, Moonen CT, McLaughlin AC (1991) In vivo measurement of cerebral oxygen consumption and blood flow using 17O magnetic resonance imaging. Magn Reson Med 21:313–319

    Article  CAS  PubMed  Google Scholar 

  12. Fiat D, Kang S (1992) Determination of the rate of cerebral oxygen consumption and regional cerebral blood flow by non-invasive 17O in vivo NMR spectroscopy and magnetic resonance imaging: Part 1. Theory and data analysis methods. Neurol Res 14:303–311

    CAS  PubMed  Google Scholar 

  13. Zhu XH, Zhang Y, Tian RX, Lei H, Zhang N, Zhang X, Merkle H, Ugurbil K, Chen W (2002) Development of 17O NMR approach for fast imaging of cerebral metabolic rate of oxygen in rat brain at high field. Proc Natl Acad Sci USA 99:13194–13199

    Article  CAS  PubMed  Google Scholar 

  14. Zhang N, Zhu XH, Lei H, Ugurbil K, Chen W (2004) Simplified methods for calculating cerebral metabolic rate of oxygen based on 17O magnetic resonance spectroscopic imaging measurement during a short 17O2 inhalation. J Cereb Blood Flow Metab 24(8):840–848

    Article  CAS  PubMed  Google Scholar 

  15. Zhu XH, Zhang N, Zhang Y, Zhang X, Ugurbil K, Chen W (2005) In vivo 17O NMR approaches for brain study at high field. NMR Biomed 18(2):83–103

    Article  CAS  PubMed  Google Scholar 

  16. Zhu XH, Chen W (2011) In vivo oxygen-17 NMR for imaging brain oxygen metabolism at high field. Prog Nucl Magn Reson Spectrosc 59:319–335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Atkinson I, Thulborn K (2010) Feasibility of mapping the tissue mass corrected Bioscale of cerebral metabolic rate of oxygen consumption using 17-oxygen and 23-sodium MR imaging in a human brain at 9.4 T. NeuroImage 51:723–733

    Article  CAS  PubMed  Google Scholar 

  18. Mateescu GD, Kuhn W (1988) Combined 17O/1H magnetic resonance microscopy in plants, animals and material: present status and potential. In: Proceedings of the 3th scientific meeting, synthesis and application of isotopically labelled compounds, Innsbruck, pp 499–508

  19. Mateescu GD, Fercu D (1994) Concerted oxygen-17/phosphorus-31 magnetic resonance spectroscopy: a novel approach for metabolism. Adv Exp Biol 361:234

    Article  Google Scholar 

  20. Fiat D, Ligeti L, Lyon RC, Ruttner Z, Pekar J, McLaughlin A (1991) Monitoring cerebral oxygen consumption in vivo 17O NMR. J Cereb Blood Flow Metab 11(Suppl. 2):781

    Google Scholar 

  21. Mintun MA, Raichle MEE, Martin WRW, Herscovitch P (1984) Brain oxygen utilization measured with O-15 radiotracers and positron emission tomography. J Nucl Med 25:177–187

    CAS  PubMed  Google Scholar 

  22. Ernst RR, Bodenhausen G, Wokaun A (1987) Principles of nuclear magnetic resonance in one and two dimensions. Oxford University Press, New York. ISBN 0-19-855647-0

    Google Scholar 

  23. Hoult DI, Richards RE (1976) The signal-to-noise ratio of the nuclear magnetic resonance experiment. J Magn Reson 24:71–85

    Google Scholar 

  24. Zhu XH, Merkle H, Kwag JH, Ugurbil K, Chen W (2001) 17O relaxation time and NMR sensitivity of cerebral water and their field dependence. Magn Reson Med 45:543–549

    Article  CAS  PubMed  Google Scholar 

  25. Abragam A (1961) The principles of nuclear magnetism. Oxford University Press, London, ISBN 0-19-852014

  26. Meiboom S (1961) NMR study of the proton transfer in water. J Chem Phy 34:375–388

    Article  CAS  Google Scholar 

  27. Thelwall PE, Blackband SJ, Chen W (2003) Field dependence of 17O T1, T2 and SNR—in vitro and in vivo studies at 4.7, 11 and 17.6 Tesla. In: Proceedings of the 11th scientific meeting, International Society for Magnetic Resonance in Medicine, Toronto, p 504

  28. Ronen I, Navon G (1994) A new method for proton detection of H 172 O with potential applications for functional MRI. Magn Reson Med 32:789–793

    Article  CAS  PubMed  Google Scholar 

  29. Ronen I, Lee JH, Merkle H, Ugurbil K, Navon G (1997) Imaging H 172 O distribution in a phantom and measurement of metabolically produced H 172 O in live mice by proton NMR. NMR Biomed 10:333–340

    Article  CAS  PubMed  Google Scholar 

  30. Ronen I, Merkle H, Ugurbil K, Navon G (1998) Imaging of H 172 O distribution in the brain of a live rat by using proton-detected 17O MRI. Proc Natl Acad Sci USA 95(22):12934–12939

    Article  CAS  PubMed  Google Scholar 

  31. Stolpen AH, Reddy R, Leigh JS (1996) 17O-decoupled proton MR spectroscopy and imaging in a tissue model. J Magn Reson 125:1–7

    Article  Google Scholar 

  32. Zhu X, Chen JM, Tu TW, Chen W, Song SK (2013) Simultaneous and noninvasive imaging of cerebral oxygen metabolic rate, blood flow and oxygen extraction fraction in stroke mice. NeuroImage 64:437–447

    Article  PubMed Central  PubMed  Google Scholar 

  33. Burnett LJ, Zeltmann AH (1974) 1H 172 O spin–spin coupling constant in liquid water. J Chem Phy 60:4636–4637

    Article  CAS  Google Scholar 

  34. Charagundla SR, Stolpen AH, Leigh JS, Reddy R (1998) Off-resonance proton T dispersion imaging of 17O-enriched tissue phantoms. Magn Reson Med 39:588–595

    Article  CAS  PubMed  Google Scholar 

  35. Reddy R, Stolpen AH, Leigh JS (1995) Detection of 17O by proton T1 rho dispersion imaging. J Magn Reson B 108(3):276–279

    Article  CAS  PubMed  Google Scholar 

  36. Mellon EA, Beesam RS, Baumgardner JE, Borthakur A, Witschey WR, Reddy R (2009) Estimation of the regional cerebral metabolic rate of oxygen consumption with proton detected 17O MRI during precision 17O2 inhalation in swine. J Neurosci Methods 179(1):29–39

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Kwong KK, Hopkins AL, Belliveau JW, Chesler DA, Porkka LM, McKinstry RC, Finelli DA, Hunter GJ, Moore JB, Barr RG (1991) Proton NMR imaging of cerebral blood flow using H 172 O. Magn Reson Med 22(1):154–158

    Article  CAS  PubMed  Google Scholar 

  38. De Crespigny AJ, D’Arceuil HE, Engelhorn T, Moseley ME (2000) MRI of focal cerebral ischemia using (17)O-labeled water. Magn Reson Med 43(6):876–883

    Article  PubMed  Google Scholar 

  39. Baumgardner JE, Mellon EA, Tailor DR, Mallikarjunarao K, Borthakur A, Reddy R (2008) Mechanical ventilator for delivery of 17O2 in brief pulses. Open Biomed Eng J 2:57–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Kety SS, Schmidt CF (1948) The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest 27(4):476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Jokivarsi K, Hiltunen Y, Gröhn H, Tuunanen P, Gröhn O, Kauppinen R (2010) Estimation of the onset time of cerebral ischemia using T1 and T2 MRI in rats. Stroke 41(1):2335–2340

    Article  PubMed  Google Scholar 

  42. Hopkins AL, Barr RG (1987) Oxygen-17 compounds as potential NMR T 2 contrast agents: enrichment effects of H 172 O on protein solutions and living tissues. Magn Reson Med 4:399–403

    Article  CAS  PubMed  Google Scholar 

  43. Brown TR, Kincaid BM, Ugurbil K (1982) NMR chemical shift imaging in three dimensions. Proc Natl Acad Sci USA 79:3523–3526

    Article  CAS  PubMed  Google Scholar 

  44. Hu X, Chen W, Patel M, Ugurbil K (1995) Chemical shift imaging: an introduction to its theory and practice. In: Bronzino JD (ed) Biomedical engineering handbook, CRC, USA, pp 1036–1045

  45. Nagel AM, Laun FB, Weber MA, Matthies C, Semmler W, Schad LR (2009) Sodium MRI using adensity-adapted 3D radial acquisition technique. Magn Reson Med 62:1565–1573

    Article  PubMed  Google Scholar 

  46. Möllenhoff K, Felder J, Romanzetti S, Gordji-Nejad A, Shah NJ (2013) Natural abundance in vivo 17O measurements at 9.4T. In: Proceedings of the 30th scientific meeting, European Society for Magnetic Resonance in Medicine and Biology, Toulouse, p 326

  47. Oros-Peusquens AM, Keil F, Abbas Z, Gras V, Moellenhoff K, Shah NJ (2012) A seven-minute protocol for quantitative, whole-brain, accurate water content mapping at 3T for neuroscientific applications. In: Proceedings of the 20th scientific meeting, International Society for Magnetic Resonance in Medicine, Melbourne, p 4270

  48. Raichle ME, Gusnard DA (2002) Appraising the brain’s energy budget. Proc Natl Acad Sci USA 99:10237–10239

    Article  CAS  PubMed  Google Scholar 

  49. Leenders KL, Perani D, Lammertsma AA, Heather JD, Buckingham P, Healy MJR, Gibbs JM, Wise RJS, Hatazawa J, Herold S, Beaney RP, Brooks DJ, Spinks T, Rhodes C, Frackowiak RJS, Jones T (1990) Cerebral blood flow, blood volume, and oxygen utilization: normal values and effect of age. Brain 113:27–47

    Article  PubMed  Google Scholar 

  50. Ishii K, Kitagaki H, Kono M, Mon E (1996) Decreased medial temporal oxygen metabolism in Alzheimer’s disease shown by PET. J Nuci Med 37(7):1159–1165

    CAS  Google Scholar 

  51. Hoffmann M, Radbruch A, Semmler W, Nagel A (2013) Partial volume corrected CMRO2 determination in a glioblastoma patient by 17O MRI In: Proceedings of the 21th scientific meeting, International Society for Magnetic Resonance in Medicine, Salt Lake City, USA, p 216

  52. Delapaz R, Gupte P (2011) Potential application of ¹7O MRI to human ischemic stroke. Adv Exp Med Biol 701:215–222

    Article  CAS  PubMed  Google Scholar 

  53. Poulsen PH, Smith DF, Ostergaard L, Danielsen EH, Gee A, Hansen SB (1997) In vivo estimation of cerebral blood flow, oxygen consumption and glucose metabolism in the pig by [15O] water injection, [15O] oxygen inhalation and dual injections of [18F] fluorodeoxyglucose. J Neurosci Methods 77:199–209

    Article  CAS  PubMed  Google Scholar 

  54. Fiat D, Dolinsek J, Hankiewicz J, Dujovny M, Ausman JI (1993) Determination of regional cerebral oxygen consumption in the human: 17O natural abundance cerebral magnetic resonance imaging and spectroscopy in a whole body system. Neurol Res 15:237–248

    CAS  PubMed  Google Scholar 

  55. Fiat D, Hankiewicz J, Liu S, Trbovic S, Brint S (2004) 17O magnetic resonance imaging of the human brain. Neurol Res 26(8):803–808

    Article  PubMed  Google Scholar 

  56. Mellon EA, Beesam RS, Elliott MA, Reddy R (2010) Mapping of cerebral oxidative metabolism with MRI. Proc Natl Acad Sci USA 107:11787–11792

    Article  CAS  PubMed  Google Scholar 

  57. Narazaki M, Kanazawa Y, Koike S, Ando K, Ikehira H (2013) Quantitative (17)O imaging towards oxygen consumption study in tumor bearing mice at 7T. epub ahead of print Magn Reson Imaging pii: S0730-725X(12)00408-0

  58. Tailor DR, Baumgardner JE, Regatte RR, Leigh JS, Reddy R (2004) Proton MRI of metabolically produced H 172 O using an efficient 17O2 delivery system. NeuroImage 22:611–618

    Article  PubMed  Google Scholar 

  59. Hoffmann SH, Begovatz P, Nagel AM, Umathum R, Schommer K, Bachert P, Bock M (2011) A measurement setup for direct 17O MRI at 7 T. Magn Reson Med 66:1109–1115

    Article  PubMed  Google Scholar 

  60. McCommis KS, He X, Abendschein DR, Gupte PM, Gropler RJ, Zheng J (2010) Cardiac 17O MRI: toward direct quantification of myocardial oxygen consumption. Magn Reson Med 63(6):1442–1447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Biro GP, Blais P, Rosen AL (1987) Perfluorocarbon blood substitutes. Crit Rev Oncol Hematol 6:311–374

    Article  CAS  PubMed  Google Scholar 

  62. Flaim SF (1994) Pharmacokinetics and side effects of perfluorocarbon-based blood substitutes. Art Cells Blood Subs Immob Biotech 22(4):1043–1054

    Article  CAS  Google Scholar 

  63. Spahn DR (1999) Blood substitutes. Artificial oxygen carriers: perfluorocarbon emulsions. Crit Care 3:R93–R97

    Article  CAS  PubMed  Google Scholar 

  64. Oros AM, Shah NJ (2004) Hyperpolarized xenon in NMR and MRI. Phy Med Biol 49(20):R105–R153

    Article  CAS  Google Scholar 

  65. Wey HY, Du F, Lin AL, Shih YYI, Madi S, Fox PT, Gupte PM, Duong TQ (2010) Indirect 17O MRI using T at 11.7 T. In: Proceedings of the 18th scientific meeting, International Society for Magnetic Resonance in Medicine, Stockholm, p 726

  66. Muccigrosso D, He X, Abendschein D, Bashir A, Gupte P, Chen W, Gropler RJ, Zheng J (2011) Methods for quantification of absolute myocardial oxygen consumption with 17O-CMR. In: Proceedings of the 19th scientific meeting, International Society for Magnetic Resonance in Medicine, Montreal, p 218

  67. Zheng J, Muccigrosso D, Bashir A, Gupte P, Gropler RJ (2012) Quantitative cardiac 17O MRI: initial validation study. In: Proceedings of the 20th scientific meeting, International Society for Magnetic Resonance in Medicine, Melbourne, p 3887

  68. Wang X, Zhu XH, Zhang Y and Chen W (2013) Significant BOLD signal reduction induced by perfluorocarbon emulsion in the rat brain. In: Proceedings of the 21th scientific meeting, International Society for Magnetic Resonance in Medicine, Salt Lake City, p 848

  69. Parhami P, Fung BM (1983) Fluorine-19 relaxation study of perfluoro chemicals as oxygen carriers. J Phy Chem 87:1931–1937

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Arthur W. Magill for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadim Jon Shah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordji-Nejad, A., Möllenhoff, K., Oros-Peusquens, A.M. et al. Characterizing cerebral oxygen metabolism employing oxygen-17 MRI/MRS at high fields. Magn Reson Mater Phy 27, 81–93 (2014). https://doi.org/10.1007/s10334-013-0413-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-013-0413-4

Keywords

Navigation