Skip to main content

Advertisement

Log in

Exploring and enhancing relaxation-based sodium MRI contrast

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Object

Sodium MRI is typically concerned with measuring tissue sodium concentration. This requires the minimization of relaxation weighting. However, 23Na relaxation may itself be interesting to explore, given an underlying mechanism (i.e. the electric-quadrupole-moment–electric-field-gradient interaction) that differs from 1H. A new sodium sequence was developed to enhance 23Na relaxation contrast without decreasing signal-to-noise ratio.

Materials and Methods

The new sequence, labeled Projection Acquisition in the steady-state with Coherent MAgNetization (PACMAN), uses gradient refocusing of transverse magnetization following readout, a short repetition time, and a long radiofrequency excitation pulse. It was developed using simulation, verified in model environments (saline and agar), and evaluated in the brain of three healthy adult volunteers.

Results

Projection Acquisition in the steady-state with Coherent MAgNetization generates a large positive contrast-to-noise ratio (CNR) between saline and agar, matching simulation-based design. In addition to enhanced CNR between cerebral spinal fluid and brain tissue in vivo, PACMAN develops substantial contrast between gray and white matter. Further simulation shows that PACMAN has a ln(T 2f/T 1) contrast dependence (where T 2f is the fast component of 23Na T 2), as well as residual quadrupole interaction dependence.

Conclusion

The relaxation dependence of PACMAN sodium MRI may provide contrast related to macromolecular tissue structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Inglese M, Madelin G, Oesingmann N, Babb JS, Wu W, Stoeckel B, Herbert J, Johnson G (2010) Brain tissue sodium concentration in multiple sclerosis: a sodium imaging study at 3 Tesla. Brain 133:847–857

    Article  CAS  PubMed  Google Scholar 

  2. Nielles-Vallespin S, Weber MA, Bock M, Bongers A, Speier P, Combs SE, Wohrle J, Lehmann-Horn F, Essig M, Schad LR (2007) 3D radial projection technique with ultrashort echo times for sodium MRI: clinical applications in human brain and skeletal muscle. Magn Reson Med 57(1):74–81

    Article  CAS  PubMed  Google Scholar 

  3. Boada FE, Christensen JD, Huanghellinger FR, Reese TG, Thulborn KR (1994) Quantitative in vivo tissue sodium concentration maps—the effects of biexponential relaxation. Magn Reson Med 32(2):219–223

    Article  CAS  PubMed  Google Scholar 

  4. Thulborn KR, Gindin TS, Davis D, Erb P (1999) Comprehensive MR imaging protocol for stroke management: tissue sodium concentration as a measure of tissue viability in nonhuman primate studies and in clinical studies. Radiology 213(1):156–166

    Article  CAS  PubMed  Google Scholar 

  5. Ouwerkerk R, Bleich KB, Gillen JS, Pomper MG, Bottomley PA (2003) Tissue sodium concentration in human brain tumors as measured with Na-23 mr imaging. Radiology 227(2):529–537

    Article  PubMed  Google Scholar 

  6. Ouwerkerk R, Bottomley PA, Solaiyappan M, Spooner AE, Tomaselli GF, Wu KC, Weiss RG (2008) Tissue sodium concentration in myocardial infarction in humans: a quantitative Na-23 MR imaging study. Radiology 248(1):88–96

    Article  PubMed Central  PubMed  Google Scholar 

  7. Ouwerkerk R, Jacobs MA, Macura KJ, Wolff AC, Stearns V, Mezban SD, Khouri NF, Bluemke DA, Bottomley PA (2007) Elevated tissue sodium concentration in malignant breast lesions detected with non-invasive Na-23 MRI. Breast Cancer Res Treat 106(2):151–160

    Article  CAS  PubMed  Google Scholar 

  8. Woessner DE (2001) NMR relaxation of spin-(3)/(2) nuclei: effects of structure, order, and dynamics in aqueous heterogeneous systems. Concept Magn Reson 13(5):294–325

    Article  CAS  Google Scholar 

  9. Rooney WD, Springer CS (1991) A comprehensive approach to the analysis and interpretation of the resonances of spins 3/2 from living systems. NMR Biomed 4(5):209–226

    Article  CAS  PubMed  Google Scholar 

  10. Hubbard PS (1970) Nonexponential nuclear magnetic relaxation by quadrupole interactions. J Chem Phys 53(3):985

    Article  CAS  Google Scholar 

  11. Nagel AM, Bock M, Hartmann C, Gerigk L, Neumann JO, Weber MA, Bendszus M, Radbruch A, Wick W, Schlemmer HP, Semmler W, Biller A (2011) The potential of relaxation-weighted sodium magnetic resonance imaging as demonstrated on brain tumors. Invest Radiol 46(9):539–547

    Article  PubMed  Google Scholar 

  12. Winkler SS, Thomasson DM, Sherwood K, Perman WH (1989) Regional T2 and sodium concentration estimates in the normal human-brain by Na-23 mr imaging at 1.5 T. J Comput Assist Tomogr 13(4):561–566

    Article  CAS  PubMed  Google Scholar 

  13. Bartha R, Menon RS (2004) Long component time constant of Na-23 T*(2) relaxation in healthy human brain. Magn Reson Med 52(2):407–410

    Article  PubMed  Google Scholar 

  14. Fleysher L, Oesingmann N, Stoeckel B, Grossman RI, Inglese M (2009) Sodium long-component T-2* mapping in human brain at 7 Tesla. Magn Reson Med 62(5):1338–1341

    Article  PubMed Central  PubMed  Google Scholar 

  15. Winter PM, Bansal N (2001) Triple-quantum-filtered Na-23 NMR spectroscopy of subcutaneously implanted 9 l gliosarcoma in the rat in the presence of tmdotp5-. J Magn Reson 152(1):70–78

    Article  CAS  PubMed  Google Scholar 

  16. Rooney WD, Springer CS (1991) The molecular environment of intracellular sodium—Na-23 NMR relaxation. NMR Biomed 4(5):227–245

    Article  CAS  PubMed  Google Scholar 

  17. Halle B, Wennerstrom H, Piculell L (1984) Interpretation of counterion spin relaxation in poly-electrolyte solutions. J Phys Chem 88(12):2482–2494

    Article  CAS  Google Scholar 

  18. Springer CS (1996) Biological systems: spin 3/2 nuclei. Encycl Nucl Magn Reson. doi:10.1002/9780470034590

  19. Stobbe R, Beaulieu C (2008) Sodium imaging optimization under specific absorption rate constraint. Magn Reson Med 59(2):345–355

    Article  PubMed  Google Scholar 

  20. Hussain MS, Stobbe RW, Bhagat YA, Emery D, Butcher KS, Manawadu D, Rizvi N, Maheshwari P, Scozzafava J, Shuaib A, Beaulieu C (2009) Sodium imaging intensity increases with time after human ischemic stroke. Ann Neurol 66(1):55–62

    Article  PubMed  Google Scholar 

  21. Hancu I, van der Maarel JRC, Boada FE (2000) A model for the dynamics of spins 3/2 in biological media: signal loss during radiofrequency excitation in triple-quantum-filtered sodium MRI. J Magn Reson 147(2):179–191

    Article  CAS  PubMed  Google Scholar 

  22. Joseph PM, Summers RM (1987) The flip-angle effect—a method for detection of Na-23 quadrupole splitting in tissue. Magn Reson Med 4(1):67–77

    Article  CAS  PubMed  Google Scholar 

  23. Watts A, Stobbe RW, Beaulieu C (2011) Signal-to-noise optimization for sodium MRI of the human knee at 4.7 Tesla using steady state. Magn Reson Med 66(3):697–705

    Article  PubMed  Google Scholar 

  24. Stobbe R, Beaulieu C (2005) In vivo sodium magnetic resonance imaging of the human brain using soft inversion recovery fluid attenuation. Magn Reson Med 54(5):1305–1310

    Article  CAS  PubMed  Google Scholar 

  25. Tsang A, Stobbe RW, Beaulieu C (2013) Evaluation of b-inhomogeneity correction for triple-quantum-filtered sodium MRI of the human brain at 4.7T. J Magn Reson 230C:134–144

    Article  Google Scholar 

  26. Tsang A, Stobbe RW, Beaulieu C (2012) Triple-quantum-filtered sodium imaging of the human brain at 4.7T. Magn Reson Med 67(6):1633–1643

    Article  PubMed  Google Scholar 

  27. Stobbe R, Beaulieu C (2006) Sodium relaxometry: towards the characterization of the sodium NMR environment in the human brain using a novel relaxometry technique. Proceedings of the 14th Annual Meeting of ISMRM, Seattle, Washington, USA, p 3104

  28. Boada FE, Gillen JS, Shen GX, Chang SY, Thulborn KR (1997) Fast three dimensional sodium imaging. Magn Reson Med 37(5):706–715

    Article  CAS  PubMed  Google Scholar 

  29. Stobbe R, Beaulieu C (2008) Advantage of sampling density weighted apodization over postacquisition filtering apodization for sodium MRI of the human brain. Magn Reson Med 60(4):981–986

    Article  PubMed  Google Scholar 

  30. Kharrazian R, Jakob PM (2006) Dynamics of Na-23 during completely balanced steady-state free precession. J Magn Reson 179(1):73–84

    Article  CAS  PubMed  Google Scholar 

  31. Pandey L, Towta S, Hughes DG (1986) NMR pulse response and measurement of the quadrupole coupling-constant of 1 = 3/2 nuclei. J Chem Phys 85(12):6923–6927

    Article  CAS  Google Scholar 

  32. Stobbe R, Beaulieu C (2009) Sodium ‘invisibility’ in signal quantum sodium imaging of the human brain at high field. Proceedings of the 16th Annual Meeting of ISMRM, Honolulu, Hawaii, USA

  33. Reddy R, Bolinger L, Shinnar M, Noyszewski E, Leigh JS (1995) Detection of residual quadrupolar interaction in human skeletal-muscle and brain in vivo via multiple-quantum filtered sodium NMR-spectra. Magn Reson Med 33(1):134–139

    Article  CAS  PubMed  Google Scholar 

  34. Laustsen C, Ringgaard S, Pedersen M, Nielsen NC (2010) Quadrupolar-coupling-specific binomial pulse sequences for in vivo Na-23 NMR and MRI. J Magn Reson 206(1):139–146

    Article  CAS  PubMed  Google Scholar 

  35. Woessner DE, Bansal N (1998) Temporal characteristics of NMR signals from spin 3/2 nuclei of incompletely disordered systems. J Magn Reson 133(1):21–35

    Article  CAS  PubMed  Google Scholar 

  36. Van der Maarel JRC (2003) Thermal relaxation and coherence dynamics of spin 3/2. I. Static and fluctuating quadrupolar interactions in the multipole basis. Concept Magn Reson A 19A(2):97–116

    Google Scholar 

  37. Sigma-Aldrich Gelatin product information. http://www.sigmaaldrich.com/etc/medialib/docs/Sigma/Product_Information_Sheet/g1393pis.Par.0001.File.tmp/g1393pis.pdf

  38. Mitsuiki M, Mizuno A, Motoki M (1999) Determination of molecular weight of agars and effect of the molecular weight on the glass transition. J Agric Food Chem 47(2):473–478

    Article  CAS  PubMed  Google Scholar 

  39. ICF Consulting, United States Department of Agriculture (USDA) (2006) Gellan gum handling/processing

  40. Winter PM, Bansal N (2001) Tmdotp5- as a Na-23 shift reagent for the subcutaneously implanted 9 l gliosarcoma in rats. Magn Reson Med 45(3):436–442

    Article  CAS  PubMed  Google Scholar 

  41. Zaaraoui W, Konstandin S, Audoin B, Nagel AM, Rico A, Malikova I, Soulier E, Viout P, Confort-Gouny S, Cozzone PJ, Pelletier J, Schad LR, Ranjeva JP (2012) Distribution of brain sodium accumulation correlates with disability in multiple sclerosis: a cross-sectional Na-23 mr imaging study. Radiology 264(3):859–867

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Alberta Innovates Health Solutions (CB-Salary) and the Natural Science and Engineering Research Council of Canada (Operating).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert W. Stobbe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stobbe, R.W., Beaulieu, C. Exploring and enhancing relaxation-based sodium MRI contrast. Magn Reson Mater Phy 27, 21–33 (2014). https://doi.org/10.1007/s10334-013-0390-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-013-0390-7

Keywords

Navigation