Alleviating artifacts in 1H MRI thermometry by single scan spatiotemporal encoding

Research Article

Abstract

Objective

Recent years have seen an increased interest in combining MRI thermometry with devices capable of destroying malignancies by heat ablation. Expected from the MR protocols are accurate and fast thermal characterizations, providing real time feedback on restricted tissue volumes and/or rapidly moving organs like liver. This article explores the potential advantages of relying on spatiotemporally encoded (SPEN) sequences for retrieving real-time thermometric images based on the water’s proton resonance frequency (PRF) shifts.

Materials and methods

Hybrid spatiotemporal/k-space encoding single-scan MRI experiments were implemented on animal and human scanners, and their abilities to deliver single- and multi-slice real-time thermometric measurements based on PRF-derived phase maps in phantoms and in vivo, were compared against echo planar imaging (EPI) and gradient-echo counterparts.

Results

Under comparable acquisition conditions, SPEN exhibited advantages vis-à-vis EPI in terms of dealing with inhomogeneous magnetic field distortions, with shifts arising due to changes in the central frequency offsets, with PRF distributions, and for zooming into restricted fields-of-view without special pulse sequence provisions.

Conclusion

This work confirms the ability of SPEN sequences, particularly when implemented under fully-refocused conditions, to exploit their built-in robustness to shift- and field-derived inhomogeneities for monitoring thermal changes in real-time under in vitro and in vivo conditions.

Keywords

Spatiotemporal encoding Real-time MRI 1H-based thermometry In vivo PRF Restricted FOV 

Abbreviations

MRI

Magnetic resonance imaging

NMR

Nuclear magnetic resonance

FOV

Field of view

FT

Fourier transform

SPEN

SPatio-temporal ENcoding

PRF

Proton resonance frequency

STD

Standard deviation

SNR

Signal-to-noise ratio

SR

Super-resolution

SAR

Specific absorption rate

RF

Radio frequency

RO

Readout

PE

Phase-encode

SS

Slice-select

TE

Echo time

TR

Repetition time

EPI

Echo-planar imaging

Supplementary material

10334_2013_372_MOESM1_ESM.docx (540 kb)
Magnitude images (top row) and temperature maps derived from spin-echo EPI and Hybrid SPEN thermometry experiments in an inhomogeneous environment. Distortions in Bo were achieved by placing a titanium non-magnetic plate next to bigger water tube; a smaller one kept at constant temperature and a bigger one undergoing cooling. The vertical progression shows temperature maps at time = 0, 3, 10 min into the process. Common scan parameters: FOVs = 25 mm, resolution 0.35 × 0.35 mm (pixel matrix 70 × 70), τo = 5 ms, Tacq = 30.8 ms. For the 90° chirp Hybrid SPEN Texc = 26.8 ms, Gexc = 0.92 G/cm. (DOCX 539 kb)

References

  1. 1.
    Hindman J (1966) Proton resonance shift of water in the gas and liquid states. J Chem Phys 44:4582–4592CrossRefGoogle Scholar
  2. 2.
    Ishihara Y, Calderon A, Watanabe H, Okamoto K, Suzuki Y, Kuroda K, Suzuki Y (1995) A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med 34:814–823PubMedCrossRefGoogle Scholar
  3. 3.
    Quesson B, de Zwart JA, Moonen CTW (2000) Magnetic resonance temperature imaging for guidance of thermotherapy. Magn Reson Imaging 12:525–533CrossRefGoogle Scholar
  4. 4.
    Cline HE, Hynynen K, Hardy CJ, Watkins RD, Schenck JF, Jolesz FA (1994) MR temperature mapping of focused ultrasound surgery. Magn Reson Med 31:628–636PubMedCrossRefGoogle Scholar
  5. 5.
    Germer C, Isbert CM, Albrecht D, Ritz JP, Schilling A, Roggan A, Wolf KJ, Müller G, Buhr H (1998) Laser thermotherapy for the treatment of liver metastasis. Correlation of gadolinium DTPA-enhanced MRI with histomorphologic findings to determine criteria for follow-up monitoring. Surg Endosc 12:1317–1325PubMedCrossRefGoogle Scholar
  6. 6.
    Gellermann J, Wlodarczyk W, Hildebrandt B, Ganter H, Nicolau A, Rau B, Tilly W, Fähling H, Nadobny J, Felix R, Wust P (2005) Noninvasive magnetic resonance thermography of recurrent rectal carcinoma in a 1.5 Tesla hybrid system. Cancer Res 65:5872–5880PubMedCrossRefGoogle Scholar
  7. 7.
    Kuroda K (2005) Non-invasive MR thermography using the water proton chemical shift. Int J Hyperth 21(6):547–560CrossRefGoogle Scholar
  8. 8.
    Cernicanu A, Lepetit-Coiffe M, Roland J, Becker CD, Terraz S (2008) Validation of fast MR thermometry at 1.5 T with gradient-echo echo planar imaging sequences: phantom and clinical feasibility studies. NMR Biomed 21:849–858PubMedCrossRefGoogle Scholar
  9. 9.
    Kickhefel A, Roland J, Weiss C, Schick F (2010) Accuracy of real-time MR temperature mapping in the brain: a comparison of fast sequences. Phys Med 26:192–201PubMedCrossRefGoogle Scholar
  10. 10.
    Bankson JA, Stafford RJ, Hazle JD (2005) Partially parallel imaging with phase-sensitive data: increased temporal resolution for magnetic resonance temperature imaging. Magn Reson Med 53:658–665PubMedCrossRefGoogle Scholar
  11. 11.
    Yuan J, Mei C, Madore B, McDannold NJ, Panych LP (2011) Fast fat-suppressed reduced field-of-view temperature mapping using 2DRF excitation pulses. J Magn Reson 210:38–43PubMedCrossRefGoogle Scholar
  12. 12.
    Holbrook AB, Santos JM, Kaye E, Rieke V, Butts Pauly K (2010) Real-time MR thermometry for monitoring HIFU ablations of the liver. Magn Reson Med 63:365–373PubMedCrossRefGoogle Scholar
  13. 13.
    Holdsworth SJ, Skare S, Newbould RD, Guzmann R, Blevins NH, Bammer R (2008) Readout-segmented EPI for rapid high resolution diffusion imaging at 3T. Eur J Radiol 65:36–46PubMedCrossRefGoogle Scholar
  14. 14.
    Roujol S, Ries M, Quesson B, Moonen C, de Senneville BD (2010) Real-time MR-thermometry and dosimetry for interventional guidance on abdominal organs. Magn Reson Med 63:1080–1087PubMedCrossRefGoogle Scholar
  15. 15.
    Bernstein MA, King KF, Zhou XJ (2004) Handbook of MRI pulse sequences. Academic, ElsevierGoogle Scholar
  16. 16.
    Kunz D (1986) Use of frequency-modulated radiofrequency pulses in MR imaging experiments. Magn Reson Med 3:377–384PubMedCrossRefGoogle Scholar
  17. 17.
    Pipe JG (1995) Spatial encoding and reconstruction in MRI with quadratic phase profiles. Magn Reson Med 33:24–33PubMedCrossRefGoogle Scholar
  18. 18.
    Tal A, Frydman L (2010) Single-scan multidimensional magnetic resonance. Prog Nucl Magn Reson Spectrosc 57:241–292PubMedCrossRefGoogle Scholar
  19. 19.
    Tal A, Frydman L (2006) Spatial encoding and the acquisition of high definition MR images in inhomogeneous magnetic fields. J Magn Reson 181:179–194CrossRefGoogle Scholar
  20. 20.
    Ben-Eliezer N, Shrot Y, Frydman L (2010) High-definition single-scan 2D MRI in inhomogeneous fields using spatial encoding methods. Magn Reson Imaging 28(1):77–86PubMedCrossRefGoogle Scholar
  21. 21.
    Ben-Eliezer N, Shrot Y, Frydman L (2009) Single-scan spatially encoded MRI—principles & applications. Proc Intl Soc Mag Reson Med 17:2670Google Scholar
  22. 22.
    Goerke U, Garwood M, Ugurbil K (2011) Functional magnetic resonance imaging using RASER. Neuroimage 54(1):350–360PubMedCrossRefGoogle Scholar
  23. 23.
    Chamberlain R, Park JY, Corum C, Yacoub E, Ugurbil K, Jack CR Jr, Garwood M (2007) RASER: a new ultrafast magnetic resonance imaging method. Magn Reson Med 58(4):794–799PubMedCrossRefGoogle Scholar
  24. 24.
    Ben-Eliezer N, Irani M, Frydman L (2010) Super-resolved spatially-encoded single-scan 2D MRI. Magn Reson Med 63:1594–1600PubMedCrossRefGoogle Scholar
  25. 25.
    Ben-Eliezer N, Goerke U, Ugurbil K, Frydman L (2012) Functional MRI using super-resolved spatiotemporally-encoded imaging techniques. Magn Reson Imaging 30:1401–1408PubMedCrossRefGoogle Scholar
  26. 26.
    Styczynski Snyder AL, Corum C, Moeller S, Powell N, Garwood M (2011) Gradient and frequency modulated excitation for a tailored spatial trajectory with two-dimensional time encoding for Fourier-free imaging. In: Proceedings of the 19th scientific meeting, international society for magnetic resonance in medicine, Quebec, p 4412Google Scholar
  27. 27.
    Ben-Eliezer N, Frydman L (2011) Spatiotemporal encoding as a robust basis for fast three-dimensional in vivo MRI. NMR Biomed 10:1191–1201CrossRefGoogle Scholar
  28. 28.
    Rieke V, Butts Pauly K (2008) MR thermometry. Magn Reson Imaging 27(2):376–390CrossRefGoogle Scholar
  29. 29.
    Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210PubMedCrossRefGoogle Scholar
  30. 30.
    Heidemann RM, Anwander A, Feiweier T, Knösche TR, Turner R (2012) k-space and q-space: combining ultra-high spatial and angular resolution in diffusion imaging using ZOOPPA at 7 T. NeuroImage 60:967–978PubMedCrossRefGoogle Scholar
  31. 31.
    Nguyen T, Goerke U, Moeller S, Ugurbil K, and Garwood M (2009) Parallel imaging with RASER using multiband frequency-modulated excitation pulses. In: Proceedings of the 17th scientific meeting, international society for magnetic resonance in medicine, Honolulu, p 2738Google Scholar
  32. 32.
    Jezzard P, Balaban RS (1995) Correcting for geometric distortions in echo planar images from B0 variations. Magn Reson Med 34:65–73PubMedCrossRefGoogle Scholar
  33. 33.
    Tal A, Frydman L (2007) Spectroscopic imaging from spatially-encoded single-scan multidimensional MRI data. J Magn Reson 189:46–58PubMedCrossRefGoogle Scholar
  34. 34.
    Schmidt R, Frydman L (2012) In vivo 3D spatial/1D spectral imaging by spatiotemporal encoding: a new single-shot experimental and processing approach. Magn Reson Med. doi:10.1002/mrm.24470 Google Scholar

Copyright information

© ESMRMB 2013

Authors and Affiliations

  1. 1.Chemical Physics DepartmentWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations