A battery-driven, low-field NMR unit for thermally and hyperpolarized samples



The design of a multinuclear low-field NMR unit with variable field strength <6 mT providing accurate spin manipulations and sufficient sensitivity for direct detection of samples in thermal equilibrium to aid parahydrogen-based hyperpolarization experiments.

Materials and methods

An optimized, resistive magnet connected to a battery or wall-power driven current source was constructed to provide a magnetic field <6 mT. A digital device connected to a saddle-shaped transmit- and solenoid receive-coil enabled MR signal excitation and detection with up to 106 samples/s, controlled by a flexible pulse-programming software.


The magnetization of thermally polarized samples at 1.8 and 5.7 mT is detected in a single acquisition with a SNR ≈101 and ≈102 and a line width of 42 and 32 Hz, respectively. Nuclear spins are manipulated to an uncertainty of ±1° by means of pulses, which can be arranged in an arbitrary combination. As a demonstration, standard experiments for the measurement of relaxation parameters of thermally polarized samples were implemented. The detection of much stronger hyperpolarized signal was exemplified employing parahydrogen.


Direct detection of thermal and hyperpolarized 1H-MR signal in a single acquisition and accurate spin manipulations at 1.8 and 5.5 mT were successfully demonstrated.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9



Analog to digital converter


Digital to analog converter




Spin-order transfer


Parahydrogen and synthesis allows dramatically enhanced nuclear alignment

pH2 :



Parahydrogen induced hyperpolarization


Signal amplification by reversible exchange








Inversion recovery


Saturation recovery


  1. 1.

    Savukov IM, Seltzer SJ, Romalis MV (2007) Detection of NMR signals with a radio-frequency atomic magnetometer. J Magn Reson 185(2):214–220

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Asfour A, Hyacinte J-N, Leviel J-L (2006) Development of a fully digital and low-frequency NMR system for polarization measurement of hyperpolarized gases. In: Proceedings of the IEEE instrumentation and measurement technology conference, pp 1839–1843

  3. 3.

    Asfour A (2008) A new DAQ-based and versatile low-cost NMR spectrometer working at very-low magnetic field (4.5 mT): a palette of potential applications. In: IEEE instrumentation and measurement technology conference proceedings, pp 697–701

  4. 4.

    Parnell SR, Boag S, McKetterick TJ, Wild JM (2011) Low magnetic field manipulation of 3He spins using digital methods. J Phys Conf Ser 294:012010

    Article  Google Scholar 

  5. 5.

    Parnell SR, Woolley EB, Boag S, Frost CD (2008) Digital pulsed NMR spectrometer for nuclear spin-polarized 3He and other hyperpolarized gases. Meas Sci Technol 19(4):045601

    Article  Google Scholar 

  6. 6.

    McDermott R, Trabesinger AH, Mück M, Hahn EL, Pines A, Clarke J (2002) Liquid-state NMR and scalar couplings in microtesla magnetic fields. Science 295(5563):2247–2249

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Glöggler S, Blümich B, Appelt S (2012) NMR spectroscopy for chemical analysis at low magnetic fields. In: Topics in current chemistry, Springer, Berlin, pp 1–22

  8. 8.

    Appelt S, Kühn H, Häsing FW, Blümich B (2006) Chemical analysis by ultrahigh-resolution nuclear magnetic resonance in the Earth’s magnetic field. Nat Phys 2(2):105–109

    Article  CAS  Google Scholar 

  9. 9.

    Bidinosti CP, Choukeife J, Tastevin G, Nacher P-J, Vignaud A (2004) MRI of the lung using hyperpolarized 3He at very low magnetic field (3 mT). Magn Reson Mater Phys 16(6):255–258

    Article  CAS  Google Scholar 

  10. 10.

    Bouchiat MA, Carver TR, Varnum CM (1960) Nuclear polarization in He3 gas induced by optical pumping and dipolar exchange. Phys Rev Lett 5(8):373–375

    Article  CAS  Google Scholar 

  11. 11.

    Bachert P, Schad LR, Bock M, Knopp MV, Ebert M, Grobmann T, Heil W, Hofmann D, Surkau R, Otten EW (1996) Nuclear magnetic resonance imaging of airways in humans with use of hyperpolarized 3He. Magn Reson Med 36(2):192–196

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Ruset IC, Ketel S, Hersman FW (2006) Optical pumping system design for large production of hyperpolarized {129}Xe. Phys Rev Lett 96(5):053002

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Schröder L, Lowery TJ, Hilty C, Wemmer DE, Pines A (2006) Molecular imaging using a targeted magnetic resonance hyperpolarized biosensor. Science 314(5798):446–449

    PubMed  Article  Google Scholar 

  14. 14.

    Abragam A, Goldman M (1978) Principles of dynamic nuclear-polarization. Rep Prog Phys 41(3):395–467

    Article  CAS  Google Scholar 

  15. 15.

    Comment A, Rentsch J, Kurdzesau F, Jannin S, Uffmann K, Van Heeswijk RB, Hautle P, Konter JA, Van den Brandt B, Van der Klink JJ (2008) Producing over 100 ml of highly concentrated hyperpolarized solution by means of dissolution DNP. J Magn Reson 194(1):152–155

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Batel M, Krajewski M, Weiss K, With O, Däpp A, Hunkeler A, Gimersky M, Pruessmann KP, Boesiger P, Meier BH, Kozerke S, Ernst M (2012) A multi-sample 94 GHz dissolution dynamic-nuclear-polarization system. J Magn Reson 214:166–174

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Ardenkjær-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L, Lerche MH, Servin R, Thaning M, Golman K (2003) Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc Natl Acad Sci USA 100(18):10158–10163

    PubMed  Article  Google Scholar 

  18. 18.

    Goldman M, Johannesson H (2005) Conversion of a proton pair para order into C-13 polarization by rf irradiation, for use in MRI. C R Physique 6(4–5):575–581

    Article  CAS  Google Scholar 

  19. 19.

    Goldman M, Johannesson H, Axelsson O, Karlsson M (2006) Design and implementation of C-13 hyperpolarization from para-hydrogen, for new MRI contrast agents. C R Chimie 9(3–4):357–363

    Article  CAS  Google Scholar 

  20. 20.

    Kadlecek S, Vahdat V, Nakayama T, Ng D, Emami K, Rizi R (2011) A simple and low-cost device for generating hyperpolarized contrast agents using parahydrogen. NMR Biomed 24(8):933–942

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Callaghan PT, Eccles CD, Seymour JD (1997) An earth’s field nuclear magnetic resonance apparatus suitable for pulsed gradient spin echo measurements of self-diffusion under Antarctic conditions. Rev Sci Instrum 68(11):4263–4270

    Article  CAS  Google Scholar 

  22. 22.

    Callaghan PT, Eccles CD (1996) NMR studies on antarctic sea ice. Bull Magn Reson 18:62–64

    Google Scholar 

  23. 23.

    Waddell KW, Coffey AM, Chekmenev EY (2011) In situ detection of PHIP at 48 mT: demonstration using a centrally controlled polarizer. J Am Chem Soc 133(1):97–101

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Chekmenev EY, Hövener J, Norton VA, Harris K, Batchelder LS, Bhattacharya P, Ross BD, Weitekamp DP (2008) PASADENA hyperpolarization of succinic acid for MRI and NMR spectroscopy. J Am Chem Soc 130(13):4212–4213

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Hövener J-B, Chekmenev EY, Harris KC, Perman WH, Tran TT, Ross BD, Bhattacharya P (2009) Quality assurance of PASADENA hyperpolarization for 13C biomolecules. Magn Reson Mater Phy 22(2):123–134

    Article  Google Scholar 

  26. 26.

    Hövener J-B, Chekmenev E, Harris K, Perman WH, Robertson LH, Ross BD, Bhattacharya P (2009) PASADENA hyperpolarization of 13C biomolecules: equipment design and installation. Magn Reson Mater Phys 22(2):111–121

    Article  Google Scholar 

  27. 27.

    Dücker EB, Kuhn LT, Münnemann K, Griesinger C (2012) Similarity of SABRE field dependence in chemically different substrates. J Magn Reson 214:159–165

    PubMed  Article  Google Scholar 

  28. 28.

    Adams RW, Duckett SB, Green RA, Williamson DC, Green GGR (2009) A theoretical basis for spontaneous polarization transfer in non-hydrogenative parahydrogen-induced polarization. J Chem Phys 131(19):194505–194515

    PubMed  Article  Google Scholar 

  29. 29.

    Adams RW, Aguilar JA, Atkinson KD, Cowley MJ, Elliott PIP, Duckett SB, Green GGR, Khazal IG, López-Serrano J, Williamson DC (2009) Reversible interactions with para-hydrogen enhance NMR sensitivity by polarization transfer. Science 323(5922):1708–1711

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Bowers CR, Weitekamp DP (1986) Transformation of symmetrization order to nuclear-spin magnetization by chemical-reaction and nuclear-magnetic-resonance. Phys Rev Lett 57(21):2645–2648

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Bowers CR, Weitekamp DP (1987) Para-hydrogen and synthesis allow dramatically enhanced nuclear alignment. J Am Chem Soc 109(18):5541–5542

    Article  CAS  Google Scholar 

  32. 32.

    Natterer J, Bargon J (1997) Parahydrogen induced polarization. Prog Nucl Magn Reson Spectrosc 31:293–315

    Article  Google Scholar 

  33. 33.

    Kadlecek S, Emami K, Ishii M, Rizi R (2010) Optimal transfer of spin-order between a singlet nuclear pair and a heteronucleus. J Magn Reson 205(1):9–13

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Bär S, Lange T, Leibfritz D, Hennig J, Elverfeldt DV, Hövener J-B (2012) On the Spin-order transfer from parahydrogen to another nucleus. J Magn Reson 225:25–35

    Google Scholar 

  35. 35.

    Hövener J-B (2008) Strategies to prolong the T1 time of hyperpolarized molecules. In: Proceedings of the 16th scientific meeting, international society for magnetic resonance in medicine, Toronto, Canada, p 336

  36. 36.

    Bergeman T, Erez G, Metcalf HJ (1987) magentostatic trapping fields for neutral atoms. Phys Rev A 35(4):1535–1546

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Friebolin H (1999) Ein Und Zwei Dim Nmr Spektroskopie 3 Auflage. Wiley-VCH

  38. 38.

    Levitt MH (2007) Spin dynamics. Wiley, Chichester

    Google Scholar 

  39. 39.

    Hövener J-B, Bär S, Leupold J, Jenne K, Leibfritz D, Hennig J, Duckett SB, Von Elverfeldt D (2013) A continuous-flow, high-throughput, high-pressure parahydrogen converter for hyperpolarization in a clinical setting. NMR Biomed 26:124–131

    PubMed  Article  Google Scholar 

  40. 40.

    Cowley MJ, Adams RW, Atkinson KD, Cockett MCR, Duckett SB, Green GGR, Lohman JAB, Kerssebaum R, Kilgour D, Mewis RE (2011) Iridium N-heterocyclic carbene complexes as efficient catalysts for magnetization transfer from para-hydrogen. J Am Chem Soc 133(16):6134–6137

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Hoult D, Richards R (1976) The signal-to-noise ratio of the nuclear magnetic resonance experiment. J Magn Reson 24(1):71–85

    Google Scholar 

  42. 42.

    Hoult DI (2009) The origins and present status of the radio wave controversy in NMR. Concept Magn Reson A 34A(4):193–216

    Article  CAS  Google Scholar 

Download references


Part of this work was supported by the Innovationsfonds Baden-Würtemberg and the Academy of Excellence of the German Research Foundation. The authors wish to thank D. I. Hoult for helpful discussions.

Author information



Corresponding author

Correspondence to Jan-Bernd Hövener.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Borowiak, R., Schwaderlapp, N., Huethe, F. et al. A battery-driven, low-field NMR unit for thermally and hyperpolarized samples. Magn Reson Mater Phy 26, 491–499 (2013). https://doi.org/10.1007/s10334-013-0366-7

Download citation


  • NMR
  • Low-field NMR
  • Hyperpolarization
  • Parahydrogen
  • PHIP