Skip to main content
Log in

Evaluation of an attenuation correction method for PET/MR imaging of the head based on substitute CT images

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Object

The aim of this study was to evaluate MR-based attenuation correction of PET emission data of the head, based on a previously described technique that calculates substitute CT (sCT) images from a set of MR images.

Materials and methods

Images from eight patients, examined with 18F-FLT PET/CT and MRI, were included. sCT images were calculated and co-registered to the corresponding CT images, and transferred to the PET/CT scanner for reconstruction. The new reconstructions were then compared with the originals. The effect of replacing bone with soft tissue in the sCT-images was also evaluated.

Results

The average relative difference between the sCT-corrected PET images and the CT-corrected PET images was 1.6 % for the head and 1.9 % for the brain. The average standard deviations of the relative differences within the head were relatively high, at 13.2 %, primarily because of large differences in the nasal septa region. For the brain, the average standard deviation was lower, 4.1 %. The global average difference in the head when replacing bone with soft tissue was 11 %.

Conclusion

The method presented here has a high rate of accuracy, but high-precision quantitative imaging of the nasal septa region is not possible at the moment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. von Schulthess G, Schlemmer H (2009) A look ahead: PET/MR versus PET/CT. Eur J Nucl Med Mol Imaging 36(Suppl 1):S3–S9

    Article  Google Scholar 

  2. Herzog H, Van Den Hoff J (2012) Combined PET/MR systems: an overview and comparison of currently available options. Q J Nucl Med Mol Imaging 56(3):247–267

    PubMed  CAS  Google Scholar 

  3. Kinahan PE, Townsend DW, Beyer T, Sashin D (1998) Attenuation correction for a combined 3D PET/CT scanner. Med Phys 25:2046–2053

    Article  PubMed  CAS  Google Scholar 

  4. Hofmann M, Pichler B, Schölkopf B, Beyer T (2009) Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques. Eur J Nucl Med Mol Imaging 36(Suppl 1):S93–S104

    Article  PubMed  Google Scholar 

  5. Keereman V, Fierens Y, Broux T, De Deene Y, Lonneux M, Vandenberghe S (2010) MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences. J Nucl Med 51:812–818

    Article  PubMed  Google Scholar 

  6. Salomon A, Goedicke A, Schweizer B, Aach T, Schulz V (2011) Simultaneous reconstruction of activity and attenuation for PET/MR. IEEE Trans Med Imaging 30(3):804–813

    Article  PubMed  Google Scholar 

  7. Martinez-Möller A, Souvatzoglou M, Delso G, Bundschuh RA, Chefd’hotel C, Ziegler SI, Navab N, Schwaiger M, Nekolla SG (2009) Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med 50:520–526

    Article  PubMed  Google Scholar 

  8. Le Goff-Rougetet R, Frouin V, Mangin J-F, Bendriem B (1994) Segmented MR images for brain attenuation correction in PET. In: Proceedings of SPIE medical imaging: image processing, Newport Beach, California, p 725

  9. Catana C, van der Kouwe A, Benner T, Michel CJ, Hamm M, Fenchel M, Fischl B, Rosen B, Schmand M, Sorensen AG (2010) Toward implementing an MRI-based PET attenuation-correction method for neurologic studies on the MR-PET brain prototype. J Nucl Med 51:1431–1438

    Article  PubMed  CAS  Google Scholar 

  10. Hofmann M, Bezrukov I, Mantlik F, Aschoff P, Steinke F, Beyer T, Pichler BJ, Schölkopf B (2011) MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation- and atlas-based methods. J Nucl Med 52(9):1392–1399

    Article  PubMed  Google Scholar 

  11. Malone IB, Ansorge RE, Williams GB, Nestor PJ, Carpenter TA, Fryer TD (2011) Attenuation correction methods suitable for brain imaging with a PET/MRI scanner: a comparison of tissue atlas and template attenuation map approaches. J Nucl Med 52(7):1142–1149

    Article  PubMed  Google Scholar 

  12. Schulz V, Torres-Espallardo I, Renisch S, Hu Z, Ojha N, Börnert P, Perkuhn M, Niendorf T, Schäfer WM, Brockmann H, Krohn T, Buhl A, Günther RW, Mottaghy FM, Krombach GA (2011) Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data. Eur J Nucl Med Mol Imaging 38(1):138–152

    Article  PubMed  CAS  Google Scholar 

  13. Wagenknecht G, Kops ER, Mantlik F, Fried E, Pilz T, Hautzel H, Tellmann L, Pichler BJ, Herzog H (2011) Attenuation correction in MR-BrainPET with segmented T1-weighted MR images of the patient’s head — A comparative study with CT. In: Proceedings of the IEEE NSS/MIC conference, Valencia, p 2261

  14. Robson M, Gatehouse P, Bydder M, Bydder G (2003) Magnetic resonance: an introduction to ultrashort TE (UTE) imaging. J Comput Assist Tomogr 27:825–846

    Article  PubMed  Google Scholar 

  15. Johansson A, Karlsson M, Nyholm T (2011) CT substitute derived from MRI sequences with ultrashort echo time. Med Phys 38(5):2708–2714

    Article  PubMed  Google Scholar 

  16. Johansson A, Karlsson M, Yu J, Asklund T, Nyholm T (2012) Voxel-wise uncertainty in CT substitute derived from MRI. Med Phys 39(6):3283–3290

    Article  PubMed  Google Scholar 

  17. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996

    Article  PubMed  CAS  Google Scholar 

  18. Shields A, Grierson J, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, Obradovich JE, Muzik O, Mangner TJ (1998) Imaging proliferation in vivo with F-18 FLT and positron emission tomography. Nat Med 4:1334–1336

    Article  PubMed  CAS  Google Scholar 

  19. Chen W, Cloughesy T, Kamdar N, Satyamurthy N, Bergsneider M, Liau L, Mischel P, Czernin J, Phelps ME, Silverman DHS (2005) Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med 46:945–952

    PubMed  CAS  Google Scholar 

  20. Doran S, Charles-Edwards L, Reinsberg S, Leach M (2005) A complete distortion correction for MR images: I. Gradient warp correction. Phys Med Biol 50:1343–1361

    Article  PubMed  Google Scholar 

  21. Valentin J (ed) (2003) ICRP Publication 89. Basic anatomical and physiological data for use in radiological protection: reference values. Elsevier Science Ltd, Oxford

  22. Burger C, Goerres G, Schoenes S, Buck A, Lonn AH, Von Schulthess GK (2002) PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients. Eur J Nucl Med Mol Imaging 29:922–927

    Article  PubMed  CAS  Google Scholar 

  23. Mantlik F, Hofmann M, Werner MK, Sauter A, Kupferschläger J, Schölkopf BJ, Pichler B, Beyer T (2011) The effect of patient positioning aids on PET quantification in PET/MR imaging. Eur J Nucl Med Mol Imaging 38:920–929

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Siemens Healthcare for providing their UTE sequence for this study. This study was jointly supported by the Faculty of Medicine at Umeå University, the University Hospital of Umeå, the Centre for Biomedical Engineering and Physics at Umeå University (CMTF) through EU-project Objective 2 funding, and the Cancer Research Foundation in Northern Sweden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Larsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larsson, A., Johansson, A., Axelsson, J. et al. Evaluation of an attenuation correction method for PET/MR imaging of the head based on substitute CT images. Magn Reson Mater Phy 26, 127–136 (2013). https://doi.org/10.1007/s10334-012-0339-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-012-0339-2

Keywords

Navigation