Advertisement

Correlating brain blood oxygenation level dependent (BOLD) fractal dimension mapping with magnetic resonance spectroscopy (MRS) in Alzheimer’s disease

  • Mohammed A. Warsi
  • William Molloy
  • Michael D. NoseworthyEmail author
Research Article

Abstract

Objectives

To correlate temporal fractal structure of resting state blood oxygen level dependent (rsBOLD) functional magnetic resonance imaging (fMRI) with in vivo proton magnetic resonance spectroscopy (1H-MRS), in Alzheimer’s disease (AD) and healthy age-matched normal controls (NC).

Materials and methods

High temporal resolution (4 Hz) rsBOLD signal and single voxel (left putamen) magnetic resonance spectroscopy data was acquired in 33 AD patients and 13 NC. The rsBOLD data was analyzed using two types of fractal dimension (FD) analysis based on relative dispersion and frequency power spectrum. Comparisons in FD were performed between AD and NC, and FD measures were correlated with 1H-MRS findings.

Results

Temporal fractal analysis of rsBOLD, was able to differentiate AD from NC subjects (P = 0.03). Low FD correlated with markers of AD severity including decreased concentrations of N-acetyl aspartate (R = 0.44, P = 0.015) and increased myoinositol (mI) (R = −0.45, P = 0.012).

Conclusion

Based on these results we suggest fractal analysis of rsBOLD could provide an early marker of AD.

Keywords

Fractals Magnetic resonance imaging Magnetic resonance spectroscopy 

Notes

Acknowledgments

This work was supported by the Canadian Institute of Health Research (CHIR) FRN79779 (WM) and the Ontario Graduate Scholarship in Science and Technology Fund Raymond Moore Scholarship (MAW).

References

  1. 1.
    Wink A-M, Bullmore E, Barnes A, Bernard F, Suckling J (2008) Monofractal and multifractal dynamics of low frequency endogenous brain oscillations in functional MRI. Hum Brain Mapp 29(7):791–801PubMedCrossRefGoogle Scholar
  2. 2.
    Song IH, Lee SM, Kim IY, Lee DS, Kim SI (2005) Mutifractal analysis of electroencephalogram time series in humans. Lect Notes Comput Sci 3512:921–926CrossRefGoogle Scholar
  3. 3.
    Maxim V, Sendur L, Fadili J, Suckling J, Gould R, Howard R, Bullmore E (2005) Fractional Gaussian noise, functional MRI and Alzheimer’s disease. Neuroimage 25(1):141–158PubMedCrossRefGoogle Scholar
  4. 4.
    Kiviniemi V, Remes J, Starck T, Nikkinen J, Haapea M, Silven O, Tervonen O (2009) Mapping transient hyperventilation induced alterations with estimates of the multi-scale dynamics of BOLD signal. Front Neuroinform 3:18PubMedCrossRefGoogle Scholar
  5. 5.
    Bassingthwaighte JB, Liebovitch LS, West BJ (1994) Fractal measures of heterogeneity and correlation. In: Fractal physiology. Oxford University Press, New York, NY, pp 63–107Google Scholar
  6. 6.
    Eke A, Herman P, Kocsis L, Kozak LR (2002) Fractal characterization of complexity in temporal physiological signals. Physiol Meas 23(1):R1–R38PubMedCrossRefGoogle Scholar
  7. 7.
    Goldberger AL, Amaral LA, Hausdorff JM, Ivanov P, Peng CK, Stanley HE (2002) Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci USA 99(Suppl 1):2466–2472PubMedCrossRefGoogle Scholar
  8. 8.
    Suckling J, Wink AM, Bernard FA, Barnes A, Bullmore E (2008) Endogenous multifractal brain dynamics are modulated by age, cholinergic blockade and cognitive performance. J Neurosci Methods 174(2):292–300PubMedCrossRefGoogle Scholar
  9. 9.
    Wink AM, Bernard F, Salvador R, Bullmore E, Suckling J (2006) Age and cholinergic effects on hemodynamics and functional coherence of human hippocampus. Neurobiol Aging 27(10):1395–1404PubMedCrossRefGoogle Scholar
  10. 10.
    Gómez C, Mediavilla A, Hornero R, Abásolo D, Fernández A (2009) Use of the Higuchi’s fractal dimension for the analysis of MEG recordings from Alzheimer’s disease patients. Med Eng Phys 31(3):306–313PubMedCrossRefGoogle Scholar
  11. 11.
    Schuff N, Capizzano AA, Du AT, Amend DL, O’Neill J, Norman D, Kramer J, Jagust W, Miller B, Wolkowitz OM, Yaffe K, Weiner MW (2002) Selective reduction of N-acetylaspartate in medial temporal and parietal lobes in AD. Neurology 58(6):928–935PubMedCrossRefGoogle Scholar
  12. 12.
    Hu J, Yang S, Xuan Y, Jiang Q, Yang Y, Haacke EM (2007) Simultaneous detection of resolved glutamate, glutamine, and gamma-aminobutyric acid at 4 T. J Magn Reson 185(2):204–213PubMedCrossRefGoogle Scholar
  13. 13.
    de Jong LW, van der Hiele K, Veer IM, Houwing JJ, Westendorp RGJ, Bollen ELEM, de Bruin PW, Middelkoop HAM, van Buchem MA, van der Grond J (2008) Strongly reduced volumes of putamen and thalamus in Alzheimer’s disease: an MRI study. Brain 131(Pt 12):3277–3285PubMedCrossRefGoogle Scholar
  14. 14.
    Koivunen J, Scheinin N, Virta JR, Aalto S, Vahlberg T, Nagren K, Helin S, Parkkola R, Viitanen M, Rinne JO (2011) Amyloid PET imaging in patients with mild cognitive impairment: a 2-year follow-up study. Neurology 76(12):1085–1090PubMedCrossRefGoogle Scholar
  15. 15.
    Qin Y, Zhu W, Zhan C, Zhao L, Wang J, Tian Q, Wang W (2011) Investigation on positive correlation of increased brain iron deposition with cognitive impairment in Alzheimer disease by using quantitative MR R2′ mapping. J Huazhong Univ Sci Technol Med Sci 31(4):578–585PubMedCrossRefGoogle Scholar
  16. 16.
    Zhu WZ, Zhong WD, Wang W, Zhan CJ, Wang CY, Qi JP, Wang JZ, Lei T (2009) Quantitative MR phase-corrected imaging to investigate increased brain iron deposition of patients with Alzheimer disease. Radiology 253(2):497–504PubMedCrossRefGoogle Scholar
  17. 17.
    Vitali P, Migliaccio R, Agosta F, Rosen HJ, Geschwind MD (2008) Neuroimaging in dementia. Semin Neurol 28(4):467–483PubMedCrossRefGoogle Scholar
  18. 18.
    Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29(3):162–173PubMedCrossRefGoogle Scholar
  19. 19.
    Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30(6):672–679PubMedCrossRefGoogle Scholar
  20. 20.
    Sheffield P, Noseworthy MD (2010) Simultaneously assessed GABA/Glutamate/Glutamine concentration gender differences at 3.0T. In: Proceedings of the 17th scientific meeting, International Society for Magnetic Resonance in Medicine, Honolulu, p 940Google Scholar
  21. 21.
    Brewer JB, Magda S, Airriess C, Smith ME (2009) Fully-automated quantification of regional brain volumes for improved detection of focal atrophy in Alzheimer disease. AJNR Am J Neuroradiol 30(3):578–580PubMedCrossRefGoogle Scholar
  22. 22.
    Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. Neuroimage 11(6 Pt 1):805–821PubMedCrossRefGoogle Scholar
  23. 23.
    Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14(1 Pt 1):21–36PubMedCrossRefGoogle Scholar
  24. 24.
    Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–S219PubMedCrossRefGoogle Scholar
  25. 25.
    Bauer M (2007) High performance computing: the software challenges. In: Proceedings of the 2007 international workshop on Parallel Symbolic Computation, London, pp 11–12Google Scholar
  26. 26.
    Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17(3):143–155PubMedCrossRefGoogle Scholar
  27. 27.
    Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20(1):45–57PubMedCrossRefGoogle Scholar
  28. 28.
    Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5(2):143–156PubMedCrossRefGoogle Scholar
  29. 29.
    Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17(2):825–841PubMedCrossRefGoogle Scholar
  30. 30.
    Rueckert D, Sonoda LI, Hayes C, Hill DL, Leach MO, Hawkes DJ (1999) Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging 18(8):712–721PubMedCrossRefGoogle Scholar
  31. 31.
    Ongür D, Prescot AP, Jensen JE, Cohen BM, Renshaw PF (2009) Creatine abnormalities in schizophrenia and bipolar disorder. Psychiatry Res 172(1):44–48PubMedCrossRefGoogle Scholar
  32. 32.
    Warsi MA, Molloy DW, Standish T, Wardlaw G, Noseworthy MD (2010) BOLD Signal Fractal Dimension Mapping in AD Demonstrates Increase Microvascular Activity and Metabolism When Combined With Spectroscopy. In: Proceedings of the 17th scientific meeting, International Society for Magnetic Resonance in Medicine, Honolulu, p 4242Google Scholar
  33. 33.
    Raichle ME (2010) The brain’s dark energy. Sci Am 302(3):44–49PubMedCrossRefGoogle Scholar
  34. 34.
    Jannot M (2010) How are we wired? Sci Illus 3(2):32–38Google Scholar
  35. 35.
    Lerch JP, Pruessner JC, Zijdenbos A, Hampel H, Teipel SJ, Evans AC (2005) Focal decline of cortical thickness in Alzheimer’s disease identified by computational neuroanatomy. Cereb Cortex 15(7):995–1001PubMedCrossRefGoogle Scholar
  36. 36.
    Liu Y, Wang K, Yu C, He Y, Zhou Y, Liang M, Wang L, Jiang T (2008) Regional homogeneity, functional connectivity and imaging markers of Alzheimer’s disease: a review of resting-state fMRI studies. Neuropsychologia 46(6):1648–1656PubMedCrossRefGoogle Scholar
  37. 37.
    Baudelet C, Cron GO, Ansiaux R, Crokart N, DeWever J, Feron O, Gallez B (2006) The role of vessel maturation and vessel functionality in spontaneous fluctuations of T2*-weighted GRE signal within tumors. NMR Biomed 19(1):69–76PubMedCrossRefGoogle Scholar
  38. 38.
    Baudelet C, Ansiaux R, Jordan BF, Havaux X, Macq B, Gallez B (2004) Physiological noise in murine solid tumours using T2*-weighted gradient-echo imaging: a marker of tumour acute hypoxia? Phys Med Biol 49(15):3389–3411PubMedCrossRefGoogle Scholar
  39. 39.
    Wardlaw G, Wong R, Noseworthy MD (2008) Identification of intratumour low frequency microvascular components via BOLD signal fractal dimension mapping. Phys Med 24(2):87–91PubMedCrossRefGoogle Scholar
  40. 40.
    Kalaria RN, Cohen DL, Premkumar DR, Nag S, LaManna JC, Lust WD (1998) Vascular endothelial growth factor in Alzheimer’s disease and experimental cerebral ischemia. Brain Res Mol Brain Res 62(1):101–105PubMedCrossRefGoogle Scholar
  41. 41.
    Barnes J, Bartlett JW, van de Pol LA, Loy CT, Scahill RI, Frost C, Thompson P, Fox NC (2009) A meta-analysis of hippocampal atrophy rates in Alzheimer’s disease. Neurobiol Aging 30(11):1711–1723PubMedCrossRefGoogle Scholar

Copyright information

© ESMRMB 2012

Authors and Affiliations

  • Mohammed A. Warsi
    • 1
    • 2
    • 3
  • William Molloy
    • 4
    • 9
  • Michael D. Noseworthy
    • 1
    • 2
    • 3
    • 5
    • 6
    • 7
    • 8
    Email author
  1. 1.School of Biomedical EngineeringMcMaster UniversityHamiltonCanada
  2. 2.Department of Psychiatry and Behavioural NeuroscienceHamiltonCanada
  3. 3.Brain-Body InstituteSt. Joseph’s HealthcareHamiltonCanada
  4. 4.St. Peter’s Centre for Studies in AgingHamiltonCanada
  5. 5.Electrical and Computer EngineeringMcMaster UniversityHamiltonCanada
  6. 6.Medical Physics and Applied Radiation SciencesMcMaster UniversityHamiltonCanada
  7. 7.Imaging Research CentreSt. Joseph’s HealthcareEast HamiltonCanada
  8. 8.Department of RadiologyMcMaster UniversityHamiltonCanada
  9. 9.Department of Gerontology and RehabilitationUniversity College CorkCorkIreland

Personalised recommendations