Skip to main content

Stripline resonator and preamplifier for preclinical magnetic resonance imaging at 4.7 T



To design and evaluate a fully shielded, λ/4 stripline resonator as a receive-only surface coil for preclinical MRI at 4.7 T.

Materials and methods

A 20 mm diameter stripline surface coil was fabricated from double-sided Duroid 5880 PCB material and was directly coupled to the input of a MOSFET preamplifier, without requiring a matching network. The new coil was compared with a conventional 20 mm, wire loop, receive-only surface coil in imaging experiments with a separate transmit-only saddle coil.


The stripline surface coil exhibits a loaded Q-factor of 132 at 200 MHz, compared to 138 for a conventional wire loop coil and its resonant frequency drops by 0.2 MHz under loading, rather than 0.5 MHz for the wire loop. The stripline coil displays a more symmetrical B 1 map compared to the wire loop, but the SNR falls off more rapidly with depth so it is 30% poorer 8 mm from the coil plane. It should be possible, however, to reduce this difference by using a thicker dielectric in future versions of the stripline coil.


Compared to a conventional surface coil, the stripline coil is easy to manufacture, requires shorter set-up times and shows reduced dielectric interaction with conductive samples.

This is a preview of subscription content, access via your institution.


  1. Zabel HJ, Bader R, Gehrig J, Lorenz WJ (1987) High-quality MR imaging with flexible transmission line resonators. Radiology 165(3): 857–859

    PubMed  CAS  Google Scholar 

  2. Wu B, Zhang X, Qu P, Shen GX (2007) Capacitively decoupled tunable loop microstrip (TLM) array at 7 T. Magn Reson Imaging 25(3): 418–424

    PubMed  Article  Google Scholar 

  3. Lee RF, Hardy CJ, Sodickson DK, Bottomley PA (2004) Lumped-element planar strip array (LPSA) for parallel MRI. Magn Reson Med 51(1): 172–183

    PubMed  Article  Google Scholar 

  4. Adriany G, Vande Moortele PF, Wiesinger F, Moeller S, Strupp JP, Andersen P, Snyder C, Zhang X, Chen W, Pruessmann KP, Boesiger P, Vaughan T, Ugurbil K (2005) Transmit and receive transmission line arrays for 7 Tesla parallel imaging. Magn Reson Med 53(2): 434–445

    PubMed  Article  Google Scholar 

  5. Burian M, Hájek M (2004) Linear microstrip surface coil for MR imaging of the rat spinal cord at 4.7 T. Magn Reson Mater Phys Biol Med 17(3): 359–362

    CAS  Google Scholar 

  6. Lee RF, Westgate CR, Weiss RG, Newman DC, Bottomley PA (2001) Planar strip array (PSA) for MRI. Magn Reson Med 45(4): 673–683

    PubMed  Article  CAS  Google Scholar 

  7. Stensgaard A (1997) Planar quadrature coil design using shielded-loop resonators. J Magn Reson 125(1): 84–91

    PubMed  Article  CAS  Google Scholar 

  8. Wu B, Zhang X, Qu P, Shen GX (2006) Design of an inductively decoupled microstrip array at 9.4 T. J Magn Reson 182(1): 126–132

    PubMed  Article  CAS  Google Scholar 

  9. Zhang X, Ugurbil K, Chen W (2001) Microstrip RF surface coil design for extremely high-field MRI and spectroscopy. Magn Reson Med 46(3): 443–450

    PubMed  Article  CAS  Google Scholar 

  10. Zhang X, Zhu X-H, Chen W (2005) Higher-order harmonic transmission-line RF coil design for MR applications. Magn Reson Med 53(5): 1234–1239

    PubMed  Article  Google Scholar 

  11. Zhang X, Ugurbil K, Sainati R, Chen W (2005) An inverted- microstrip resonator for human head proton MR imaging at 7 tesla. IEEE Trans Biomed Eng 52(3): 495–504

    PubMed  Article  Google Scholar 

  12. Konishi Y (1998) Microwave electronic circuit technology. Marcel Dekker Inc., New York

    Google Scholar 

  13. Bahl IJ, Garg R (1978) A designer’s guide to stripline circuits. Microwaves: 90–97

  14. Mispelter J, Lupu M, Briguet A (2006) NMR Probeheads for biophysical and biomedical experiments. Imperial College Press, London

    Google Scholar 

  15. Rogers Corporation (2010) RT/duroid®5870 /5880 High frequency laminates datasheet. Accessed 20-02-2010

  16. Suits BH, Garroway AN, Miller JB (1998) Surface and gradiometer coils near a conducting body: the lift-off effect. J Magn Reson 135(2): 373–379

    PubMed  Article  CAS  Google Scholar 

  17. Wilson, M, Ford, SR (eds) (2008) The ARRL handbook for radio communications. ARRL the national association for amateur radio, Newington

    Google Scholar 

  18. Philips Semiconductors/NXP Semiconductors (2010) BF981 silicon N-channel dual gate MOS FET datasheet. Accessed 20-02-2010

  19. Alecci M, Jezzard P (2002) Characterization and reduction of gradient-induced eddy currents in the RF shield of a TEM resonator. Magn Reson Med 48(2): 404–407

    PubMed  Article  Google Scholar 

  20. Peterson DM, Beck BL, Duensing GR, Fitzsimmons JR (2003) Common mode signal rejection methods for MRI: reduction of cable shield currents for high static magnetic field systems. Concepts Magn Reson Part B: Magn Reson Eng 19B(1): 1–8

    Article  Google Scholar 

  21. Mellor P, Checkley D (1995) Active coil isolation in NMR imaging and spectroscopy using PIN diodes and tuned transmission line: a practical approach. Magn Reson Mater Phys Biol Med 3(1): 35–40

    CAS  Google Scholar 

  22. Pop-Fanea L, Vallespin SN, Hutchison JMS, Forrester JV, Seton HC, Foster MA, Liversidge J (2005) Evaluation of MRI for in vivo monitoring of retinal damage and detachment in experimental ocular inflammation. Magn Reson Med 53(1): 61–68

    PubMed  Article  Google Scholar 

  23. Zelaya FO, Roffmann WU, Crozier S, Teed S, Gross D, Doddrell DM (1997) Direct visualisation of B1 inhomogeneity by flip angle dependency. Magn Reson Imaging 15(4): 497–504

    PubMed  Article  CAS  Google Scholar 

  24. Henkelman RM (1985) Measurement of signal intensities in the presence of noise in MR images. Med Phys 12(2): 232–233

    PubMed  Article  CAS  Google Scholar 

  25. Redpath TW, Hutchison JMS (1984) Estimating patient dielectric losses in NMR imagers. Magn Reson Imaging 2(4): 295–300

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ioannis Lavdas.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lavdas, I., Seton, H.C., Harrington, C.R. et al. Stripline resonator and preamplifier for preclinical magnetic resonance imaging at 4.7 T. Magn Reson Mater Phy 24, 331–337 (2011).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Preclinical MRI
  • Surface coil
  • Stripline resonator
  • High input impedance preamplifier
  • Electronic decoupling