Reproducibility of subregional trabecular bone micro-architectural measures derived from 7-Tesla magnetic resonance images


High-resolution magnetic resonance imaging (MRI) of trabecular bone combined with quantitative image analysis represents a powerful technique to gain insight into trabecular bone micro-architectural derangements in osteoporosis and osteoarthritis. The increased signal-to-noise ratio of ultra high-field MR (≥7 Tesla) permits images to be obtained with higher resolution and/or decreased scan time compared to scanning at 1.5/3T. In this small feasibility study, we show high measurement precision for subregional trabecular bone micro-architectural analysis performed on 7T knee MR images. The results provide further support for the use of trabecular bone measures as biomarkers in clinical studies of bone disorders.

This is a preview of subscription content, log in to check access.


  1. 1

    Majumdar S (2002) Magnetic resonance imaging of trabecular bone structure. Top Magn Reson Imaging 13: 323–334

    PubMed  Article  Google Scholar 

  2. 2

    Wehrli FW (2007) Structural and functional assessment of trabecular and cortical bone by micro magnetic resonance imaging. J Magn Reson Imaging 25: 390–409

    PubMed  Article  Google Scholar 

  3. 3

    Blumenkrantz G, Lindsey CT, Dunn TC et al (2004) A pilot, two-year longitudinal study of the interrelationship between trabecular bone and articular cartilage in the osteoarthritic knee. Osteoarthritis Cartil 12: 997–1005

    Article  Google Scholar 

  4. 4

    Lindsey CT, Narasimhan A, Adolfo JM et al (2004) Magnetic resonance evaluation of the interrelationship between articular cartilage and trabecular bone of the osteoarthritic knee. Osteoarthritis Cartil 12: 86–96

    Article  CAS  Google Scholar 

  5. 5

    Newitt DC, van Rietbergen B, Majumdar S (2002) Processing and analysis of in vivo high-resolution MR images of trabecular bone for longitudinal studies: reproducibility of structural measures and micro-finite element analysis derived mechanical properties. Osteoporos Int 13: 278–287

    PubMed  Article  CAS  Google Scholar 

  6. 6

    Gomberg BR, Wehrli FW, Vasilic B et al (2004) Reproducibility and error sources of micro-MRI-based trabecular bone structural parameters of the distal radius and tibia. Bone 35: 266–276

    PubMed  Article  CAS  Google Scholar 

  7. 7

    Wald MJ, Magland JF, Rajapakse CS, Wehrli FW (2010) Structural and mechanical parameters of trabecular bone estimated from in vivo high-resolution magnetic resonance images at 3 Tesla field strength. J Magn Reson Imaging 31: 1157–1168

    PubMed  Article  Google Scholar 

  8. 8

    Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 16(2): 187–198

    PubMed  Article  CAS  Google Scholar 

  9. 9

    Saha PK, Wehrli FW (2004) Measurement of trabecular bone thickness in the limited resolution regime of in vivo MRI by fuzzy distance transform. IEEE Trans Med Imaging 23: 53–62

    PubMed  Article  Google Scholar 

  10. 10

    Saha PK, Gomberg BR, Wehrli FW (2000) Three-dimensional digital topological characterization of cancellous bone architecture. Int J Imaging Syst Technol 2000 11: 81–90

    Article  Google Scholar 

  11. 11

    Krug R, Carballido-Gamio J, Banerjee S et al (2007) In vivo bone and cartilage MRI using full-balanced steady-state free-precession at 7 Tesla. Magn Reson Med 58: 1294–1298

    PubMed  Article  Google Scholar 

  12. 12

    Banerjee S, Krug R, Carballido-Gamio et al (2008) Rapid in vivo musculoskeletal MR with parallel imaging at 7T. Magn Reson Med 29: 655–660

    Article  Google Scholar 

  13. 13

    Magland J, Rajapakse CS, Wright AC, Acciavatti R, Wehrli FW (2010) 3D fast spin echo with out-of-slab cancellation: a technique for high resolution structural imaging of trabecular bone at 7 Tesla. Magn Reson Med 63: 719–727

    PubMed  Article  Google Scholar 

  14. 14

    Chang G, Pakin SK, Schweitzer ME, Saha PK, Regatte RR (2008) Adaptations in trabecular bone microarchitecture in Olympic athletes determined by 7T MRI. J Magn Reson Imaging 27: 1089–1095

    PubMed  Article  Google Scholar 

  15. 15

    Chang G, Friedrich KM, Wang L et al (2010) MRI of the wrist at 7 Tesla using an eight-channel array coil combined with parallel imaging: preliminary results. J Magn Reson Imaging 31: 740–746

    PubMed  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Gregory Chang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chang, G., Wang, L., Liang, G. et al. Reproducibility of subregional trabecular bone micro-architectural measures derived from 7-Tesla magnetic resonance images. Magn Reson Mater Phy 24, 121–125 (2011).

Download citation


  • Ultra high field
  • 7 Tesla
  • MRI
  • Trabecular bone
  • Micro-architecture
  • Knee