Skip to main content

Comparison of functional connectivity in default mode and sensorimotor networks at 3 and 7T

Abstract

Object

The objective of this work was to assess functional connectivity measurements at ultra-high field (7T), given BOLD contrast to noise ratio increases with magnetic field strength but physiological noise also increases.

Materials and methods

Resting state BOLD data were acquired at 3 and 7T to assess connectivity in the sensorimotor network (SMN) and default mode network (DMN) at different spatial smoothing levels.

Results

At 3 and 7T positive correlation is observed between a right sensorimotor seed and left sensorimotor cortex. For the DMN, a seed in posterior cingulate cortex results in a high correlation in inferior parietal lobes and medial prefrontal cortex. We show higher temporal correlation coefficients for both the SMN and DMN at 7T compared to 3T for all smoothing levels. A spatial correlation between connectivity maps revealed no significant differences for the SMN, whilst the DMN showed increased spatial correlation dependent on SNR. The maximum physiological noise contribution was found to be higher at 7T, but noise in both seed and network nodes was not significantly increased, as shown by no significant difference in the spatial correlation of maps following physiological correction.

Conclusion

7T can improve spatial specificity of connectivity maps and facilitate measurement of connectivity in areas of lower intrinsic network correlation.

This is a preview of subscription content, access via your institution.

References

  1. Mesulam MM (1998) From sensation to cognition. Brain 121: 1013–1052

    Article  PubMed  Google Scholar 

  2. Friston KJ, Frith CD (1995) Schizophernia: a disconnection syndrome? Clin Neurosci 3: 89–97

    CAS  PubMed  Google Scholar 

  3. Ozaki HS, Iwahashi K, Shimada M (1989) Ipsilateral corticocortical projections of fibers which course within Probst’s longitudinal bundle seen in the brains of mice with congenital absence of the corpus callosum: a study with the horseradish peroxidase technique. Brain Res 493: 66–73

    CAS  Article  PubMed  Google Scholar 

  4. Lin CP, Tseng WYI, Cheng HC, Chen JH (2001) Validation of diffusion tensor magnetic resonance axonal fiber imaging with registered manganese-enhanced optic tracts. Neuroimage 14: 1035–1047

    CAS  Article  PubMed  Google Scholar 

  5. Ciccarelli O, Catani M, Johansen-Berg H, Clark C, Thompson A (2008) Diffusion-based tractography in neurological disorders: concepts applications and future developments. Lancet Neurol 7: 715–727

    Article  PubMed  Google Scholar 

  6. Gray CM, Konig P, Engel AK, Singer W (1989) Oscillatory responses in cat visual-cortex exhibit inter-columnar synchronisation which reflects global stimulus properties. Nature 338: 334–337

    CAS  Article  PubMed  Google Scholar 

  7. Miller KJ, Weaver KE, Ojemann JG (2009) Direct electrophysiological measurement of human default network areas. Proc Natl Acad Sci USA 106: 12174–12177

    CAS  Article  PubMed  Google Scholar 

  8. Cordes D, Haughton VM, Arfanakis K, Wendt GJ, Turski PA, Moritz CH, Quigley MA, Meyerand ME (2000) Mapping functionally related regions of brain with functional connectivity MR imaging. Am J Neuroradiol 21: 1636–1644

    CAS  PubMed  Google Scholar 

  9. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34: 537–541

    CAS  Article  PubMed  Google Scholar 

  10. Lowe MJ, Mock BJ, Sorenson JA (1998) Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage 7: 119–132

    CAS  Article  PubMed  Google Scholar 

  11. Xiong JH, Parsons LM, Gao JH, Fox PT (1999) Interregional connectivity to primary motor cortex revealed using MRI resting state images. Hum Brain Mapp 8: 151–156

    CAS  Article  PubMed  Google Scholar 

  12. Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc B-Biol Sci 360: 1001–1013

    Article  Google Scholar 

  13. De Luca M, Beckmann CF, De Stefano N, Matthews PM, Smith SM (2006) fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 29: 1359–1367

    CAS  Article  PubMed  Google Scholar 

  14. van de Ven VG, Formisano E, Prvulovic D, Roeder CH, Linden DEJ (2004) Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest. Hum Brain Mapp 22: 165–178

    Article  PubMed  Google Scholar 

  15. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98: 676–682

    CAS  Article  PubMed  Google Scholar 

  16. Gusnard DA, Raichle ME (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2: 685–694

    CAS  Article  PubMed  Google Scholar 

  17. Simpson JR, Snyder AZ, Gusnard DA, Raichle ME (2001) Emotion-induced changes in human medial prefrontal cortex: i during cognitive task performance. Proc Natl Acad Sci USA 98: 683–687

    CAS  Article  PubMed  Google Scholar 

  18. Gusnard DA, Akbudak E, Shulman GL, Raichle ME (2001) Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc Natl Acad Sci USA 98: 4259–4264

    CAS  Article  PubMed  Google Scholar 

  19. Cabeza R, Dolcos F, Graham R, Nyberg L (2002) Similarities and differences in the neural correlates of episodic memory retrieval and working memory. Neuroimage 16: 317–330

    Article  PubMed  Google Scholar 

  20. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8: 700–711

    CAS  Article  PubMed  Google Scholar 

  21. Duong TQ, Yacoub E, Adriany G, Hu XP, Ugurbil K, Vaughan JT, Merkle H, Kim SG (2002) High-resolution spin-echo BOLD and CBF AM at 4 and 7T. Magn Reson Med 48: 589–593

    Article  PubMed  Google Scholar 

  22. Gati JS, Menon RS, Ugurbil K, Rutt BK (1997) Experimental determination of the BOLD field strength dependence in vessels and tissue. Magn Reson Med 38: 296–302

    CAS  Article  PubMed  Google Scholar 

  23. Yacoub E, Duong TQ, Adriany G, Kim SG, Ugurbil K, Hu X (2001) T2 weighted fMRI in humans using high spatial resolutions. Soc Neuro Abstr 27: 1631

    Google Scholar 

  24. Shmuel A, Yacoub E, Chaimow D, Logothetis NK, Ugurbil K (2007) Spatio-temporal point-spread function of fMRI signal in human gray matter at 7 Tesla. Neuroimage 35: 539–552

    Article  PubMed  Google Scholar 

  25. Triantafyllou C, Hoge RD, Krueger G, Wiggins CJ, Potthast A, Wiggins GC, Wald LL (2005) Comparison of physiological noise at 1.5, 3 and 7T and optimization of fMRI acquisition parameters. Neuroimage 26: 243–250

    CAS  Article  PubMed  Google Scholar 

  26. Bianciardi M, Fukunaga M, van Gelderen P, Horovitz SG, de Zwart JA, Shmueli K, Duyn JH (2009) Sources of functional magnetic resonance imaging signal fluctuations in the human brain at rest: a 7T study. Magn Reson Imaging 27: 1019–1029

    Article  PubMed  Google Scholar 

  27. Birn RM, Murphy K, Bandettini PA (2008) The effect of respiration variations on independent component analysis results of resting state functional connectivity. Hum Brain Mapp 29: 740–750

    Article  PubMed  Google Scholar 

  28. Chang C, Glover GH (2009) Effects of model-based physiological noise correction on default mode network anti-correlations and correlations. Neuroimage 47: 1448–1459

    Article  PubMed  Google Scholar 

  29. Glover GH, Li TQ, Ress D (2000) Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med 44: 162–167

    CAS  Article  PubMed  Google Scholar 

  30. Zumer JM, Brookes MJ, Stevenson CM, Francis ST, Morris PG (2010) Relating BOLD fMRI and neural oscillations through convolution and optimal linear weighting. Neuroimage 49: 1479–1489

    Article  PubMed  Google Scholar 

  31. Poole M, Bowtell R (2008) Volume parcellation for improved dynamic shimming. Magn Reson Mat Phys 21: 31–40

    Article  Google Scholar 

  32. Birn RM, Diamond JB, Smith MA, Bandettini PA (2006) Separating respiratory-variation-related neuronal-activity-related fluctuations in fluctuations from fMRI. Neuroimage 31: 1536–1548

    Article  PubMed  Google Scholar 

  33. Laird AR, Eickhoff SB, Li K, Robin DA, Glahn DC, Fox PT (2009) Investigating the functional heterogeneity of the default mode network using coordinate-based meta-analytic modeling. J Neurosci 29: 14496–14505

    CAS  Article  PubMed  Google Scholar 

  34. Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17: 143–155

    Article  PubMed  Google Scholar 

  35. Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5: 143–156

    CAS  Article  PubMed  Google Scholar 

  36. de Zwart JA, Ledden PJ, van Gelderen P, Bodurka J, Chu RX, Duyn JH (2004) Signal-to-noise ratio and parallel Imaging performance of a 16-channel receive-only brain coil array at 30 Tesla. Magn Reson Med 51: 22–26

    Article  PubMed  Google Scholar 

  37. Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA (2009) The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage 44: 893–905

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter G. Morris.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hale, J.R., Brookes, M.J., Hall, E.L. et al. Comparison of functional connectivity in default mode and sensorimotor networks at 3 and 7T. Magn Reson Mater Phy 23, 339–349 (2010). https://doi.org/10.1007/s10334-010-0220-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-010-0220-0

Keywords

  • fMRI
  • Motor cortex
  • Cingulate gyrus