Skip to main content

Advertisement

Log in

Group ICA of resting-state data: a comparison

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

Independent component analysis (ICA) has proven its applicability in both standard and resting-state fMRI. While there is consensus on single-subject ICA methodology, the extension to group ICA is more complex and a number of approaches have been suggested. Currently, two software packages are most frequently used for ICA group analysis: (1) GIFT introduced by Calhoun et al. [7], and (2) PICA, proposed by Beckmann et al. [3]. Both methods are based on the assumption of statistical independence of the extracted component maps (“spatial ICA”). Group maps are estimated via ICA on pre-calculated group data sets.

Material and Methods

In this study, we applied the two analysis approaches to a group of fMRI resting-state data sets obtained from twenty-eight healthy subjects. Default implementations were used and the number of components was restricted to 5, 10, 15, 20, 25, 30, and 35. The performance of GIFT and PICA was assessed with respect to the number of resting-state networks detected at different component estimation levels and computational load.

Results

At low component estimation levels GIFT analysis resulted in more RSNs than PICA, while for individually determined component levels both approaches obtained the same RSNs. Although component maps show some variability across the two methods, spatial and temporal comparison using correlation coefficients resulted in no significant differences between the RSNs detected across the different analyses

Conclusion

Our results show that both approaches provide an adequate way of group ICA obtaining a comparable number of RSNs differing mainly in calculation times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beckmann C, Smith S (2004) Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans Med Imaging 23(2): 137–152

    Article  PubMed  Google Scholar 

  2. Beckmann CF, Smith SM (2005) Tensorial extensions of independent component analysis for multisubject fMRI analysis. Neuroimage 25(1): 294–311

    Article  CAS  PubMed  Google Scholar 

  3. Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360(1457): 1001–1013

    Article  PubMed  Google Scholar 

  4. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Mag Reson Med 34(4): 537–541

    Article  CAS  Google Scholar 

  5. Biswal BB, Kylen JV, Hyde JS (1997) Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps. NMR Biomed 10(4–5): 165–170

    Article  CAS  PubMed  Google Scholar 

  6. Calhoun V, Adali T, McGinty V, Pekar J, Watson T, Pearlson G (2001) FMRI activation in a visual-perception task: network of areas detected using the general linear model and independent component analysis. Neuroimage 14(5): 1080–1088

    Article  CAS  PubMed  Google Scholar 

  7. Calhoun V, Adali T, Pearlson G, Pekar J (2001) A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 14: 140–151

    Article  CAS  PubMed  Google Scholar 

  8. Calhoun V, Pearlson G, Adali T (2004) Independent component analysis applied to fMRI data: a generative model for validating results. J VLSI Signal Process Syst 37(2/3): 281–291. doi:10.1023/B:VLSI.0000027491.81326.7a

    Article  Google Scholar 

  9. Calhoun V, Egolf E, Rachakonda S (2006) Group ICA of fMRI toolbox (GIFT v1.2b) Available: http://icatb.sourceforge.net

  10. Calhoun V, Kiehl K, Pearlson G (2008) Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks. Hum Brain Mapp 29: 828–838

    Article  PubMed  Google Scholar 

  11. Calhoun VD, Adali T (2006) Unmixing fMRI with independent component analysis. IEEE Eng Med Biol Mag 25(2): 79–90

    Article  PubMed  Google Scholar 

  12. Calhoun VD, Liu J, Adali T (2009) A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. Neuroimage 45(1): S163–S172

    Article  PubMed  Google Scholar 

  13. Cordes D, Haughton VM, Arfanakis K, Wendt GJ, Turski PA, Moritz CH, Quigley MA, Meyerand ME (2000) Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR Am J Neuroradiol 21(9): 1636–1644

    CAS  PubMed  Google Scholar 

  14. Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH, Quigley MA, Meyerand ME (2001) Frequencies contributing to functional connectivity in the cerebral cortex in resting-state data. AJNR Am J Neuroradiol 22(7): 1326–1333

    CAS  PubMed  Google Scholar 

  15. Correa N, Adali T, Calhoun VD (2007) Performance of blind source separation algorithms for fMRI analysis using a group ICA method. Mag Reson Imaging 25(5): 684–694

    Article  Google Scholar 

  16. Damoiseaux J, Rombouts S, Barkhof R, Scherltens P, Stam C, Smith S, Beckmann C (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 103(37): 13,848–13,853

    Article  CAS  Google Scholar 

  17. DeLuca M, Beckmann C, DeStefano N, Matthews P, Smith S (2006) fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 29(4): 1359–1367

    Article  CAS  Google Scholar 

  18. Dimitriadou E, Barth M, Windischberger C, Hornik K, Moser E (2004) A quantitative comparison of functional mri cluster analysis. Artif Intell Med 31(1): 57–71

    Article  PubMed  Google Scholar 

  19. Elseoud AA, Starck T, Remes J, Nikkinen J, Tervonen O, Kiviniemi V (2009) Model order of group PICA and resting state signal sources. Neuroimage 47(1): supplement

  20. Esposito F, Formisano E, Seifritz E, Goebel R, Morrone R, Tedeschi G, Salle FD (2002) Spatial independent component analysis of functional MRI time-series: to what extent do results depend on the algorithm used?. Hum Brain Mapp 16(3): 146–157

    Article  PubMed  Google Scholar 

  21. Esposito F, Scarabino T, Hyvarinen A, Himberg J, Formisano E, Comani S, Tedeschi G, Goebel R, Seifritz E, Salle FD (2005) Independent component analysis of fMRI group studies by self- organizing clustering. Neuroimage 25(1): 193–205

    Article  PubMed  Google Scholar 

  22. Fox M, Snyder A, Vincent J, Corbetta M, Essen DV, Raichle M (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102: 9673–9678

    Article  CAS  PubMed  Google Scholar 

  23. Greicius M, Krasnow B, Reiss A, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 100(1): 253–258

    Article  CAS  PubMed  Google Scholar 

  24. Guo Y, Pagnoni G (2008) A unified framework for group independent component analysis for multi-subject fMRI data. Neuroimage 42(3): 1078–1093

    Article  PubMed  Google Scholar 

  25. Harrison B, Pujol J, Ortiz H, Fornito A, Pantelis C, Yücel M (2008) Modulation of brain resting-state networks by sad mood induction. PLoS ONE 3(39): e1794

    Article  PubMed  Google Scholar 

  26. Himberg J, Hyvärinen A, Esposito F (2004) Validating the independent components of neuroimaging time series via clustering and visualization. Neuroimage 22(3): 1214–1222

    Article  PubMed  Google Scholar 

  27. Li YO, Adali T, Calhoun VD (2007) Estimating the number of independent components for functional magnetic resonance imaging data. Hum Brain Mapp 28(11): 1251–1266. doi:10.1002/hbm.20359

    Article  PubMed  Google Scholar 

  28. McKeown M, Hansenz L, Sejnowski TJ (2003) Independent component analysis of functional MRI: what is signal and what is noise?. Current Opin Neurobiol 13: 620–629

    Article  CAS  Google Scholar 

  29. Minka T (2000) Automatic choice of dimensionality for PCA. Technical Report 514, MIT Media Lab Vision and Modeling Group

  30. Petersen K, Hansen L, Kolenda T, Rostrup E (2000) On the independent components of functional neuroimages. In: Third international conference on independent component analysis and blind source separation, pp 615–620

  31. Rissanen J (1978) Modelling by shortest data description. Automatica 14: 465–471

    Article  Google Scholar 

  32. Schmithorst VJ, Holland SK (2004) Comparison of three methods for generating group statistical inferences from independent component analysis of functional magnetic resonance imaging data. J Mag Reson Imaging 19(3): 365–368

    Article  Google Scholar 

  33. Svensén M, Kruggel F, Benali H (2002) ICA of fMRI group study data. Neuroimage 16(3 Pt 1): 551–563

    Article  PubMed  Google Scholar 

  34. van de Ven V, Formisano E, Prvulovic D, Roeder C, Linden D (2004) Functional connectivity as revealed by spatial independent component analysis of fMRI measurments during rest. Hum Brain Mapp 22: 165–178

    Article  PubMed  Google Scholar 

  35. Weissenbacher A, Kasess C, Gerstl F, Lanzenberger R, Moser E, Windischberger C (2009) Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of preprocessing strategies. Neuroimage 47(4): 1408–1416

    Article  PubMed  Google Scholar 

  36. Woods RP (1996) Modeling for intergroup comparisons of imaging data. Neuroimage 4(3 Pt 3): S84–S94

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronika Schöpf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schöpf, V., Windischberger, C., Kasess, C.H. et al. Group ICA of resting-state data: a comparison. Magn Reson Mater Phy 23, 317–325 (2010). https://doi.org/10.1007/s10334-010-0212-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-010-0212-0

Keywords

Navigation