Skip to main content

Advertisement

Log in

Sub-pixel localisation of passive micro-coil fiducial markers in interventional MRI

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

Electromechanical devices enable increased accuracy in surgical procedures, and the recent development of MRI-compatible mechatronics permits the use of MRI for real-time image guidance. Integrated imaging of resonant micro-coil fiducials provides an accurate method of tracking devices in a scanner with increased flexibility compared to gradient tracking. Here we report on the ability of ten different image-processing algorithms to track micro-coil fiducials with sub-pixel accuracy.

Materials and methods

Five algorithms: maximum pixel, barycentric weighting, linear interpolation, quadratic fitting and Gaussian fitting were applied both directly to the pixel intensity matrix and to the cross-correlation matrix obtained by 2D convolution with a reference image.

Results

Using images of a 3 mm fiducial marker and a pixel size of 1.1 mm, intensity linear interpolation, which calculates the position of the fiducial centre by interpolating the pixel data to find the fiducial edges, was found to give the best performance for minimal computing power; a maximum error of 0.22 mm was observed in fiducial localisation for displacements up to 40 mm. The inherent standard deviation of fiducial localisation was 0.04 mm.

Conclusion

This work enables greater accuracy to be achieved in passive fiducial tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smits HFM, Bakker CJG (1998) Susceptibility-based catheter visualization. In: Adam G, Debatin JF (eds) Interventional magnetic resonance imaging. Springer, Berlin, pp 51–55

    Google Scholar 

  2. Omary RA, Unal O, Koscielski DS, Frayne R, Korosec F, Mistretta C, Strother C, Grist T (2000) Real-time MR imaging-guided passive catheter tracking with use of gadolinium filled catheters. J Vasc Intervt Radiol 11: 1079–1085

    Article  CAS  Google Scholar 

  3. Beyersdorff D, Winkel A, Hamm B, Lenk S, Loening SA, Taupitz M (2005) MR imaging—guided prostate biopsy with a closed MR Unit at 1.5 T: initial results. Radiology 234(2): 576–581

    Article  PubMed  Google Scholar 

  4. Coutts GA, Gilderdale DJ, Chui M, Kasuboski L, DeSouza NM (1998) Integrated and interactive position tracking and imaging of interventional tools and internal devices using small fiducial receiver coils. Magn Reson Med 40(6): 908–913

    Article  PubMed  CAS  Google Scholar 

  5. Burl M, Coutts G, Young IR (1996) Tuned fiducial markers to identify body locations with minimal perturbation of tissue magnetization. Magn Reson Med 36: 491–493

    Article  PubMed  CAS  Google Scholar 

  6. Fink C, Bock M, Umathum R, Volz S, Zuhlsdorff S, Grobholz R, Kauczor H, Hallscheidt P (2004) Renal embolization: feasibility of magnetic resonance-guidance using active catheter tracking and intra-arterial magnetic resonance angiography. Invest Radiol 39(2): 111–119

    Article  PubMed  Google Scholar 

  7. Dumoulin CL, Souza SP, Darrow RD (1993) Real-time position monitoring of invasive devices using magnetic resonance. Magn Reson Med 29: 411–415

    Article  PubMed  CAS  Google Scholar 

  8. Krieger A, Susil RC, Menard C, Coleman JA, Fichtinger G, Atalar E, Whitcomb LL (2005) Design of a novel MRI compatible manipulator for image guided prostate. IEEE T Bio-med Eng 52(2): 306–313

    Article  Google Scholar 

  9. Bock M, Muller S, Zuehlsdorff S, Speier P, Fink C, Hallscheidt P, Umathum R, Semmler W (2006) Active catheter tracking using parallel MRI and real-time image reconstruction. Magn Reson Med 55: 1454–1459

    Article  PubMed  Google Scholar 

  10. Wong EY, Zhang Q, Duerk JL, Lewin JS, Wendt M (2000) An optical system for wireless detuning of parallel resonant circuits. J Magn Reson Imaging 12(4): 632–638

    Article  PubMed  CAS  Google Scholar 

  11. Flask C, Elgort D, Wong E, Shankaranarayanan A, Lewin J, Wendt M, Duerk JL (2001) A method for fast 3D tracking using tuned fiducial markers and a limited LPR-FISP sequence. J Magn Reson Imaging 14: 617–627

    Article  PubMed  CAS  Google Scholar 

  12. Rea MA, McRobbie DW, Elhawary H, Tse ZT, Lampérth M, Young I (2008) A system for 3D real-time tracking of MRI-compatible devices by image processing. ASME-IEEE T Mech 13(3): 379–382

    Google Scholar 

  13. Tse ZTH, Elhawary H, Zivanovic A, Rea MA, Paley M, Bydder G, Davies BL, Young I, Lampérth MU (2008) A 3 degree of freedom MR compatible device for magic angle related in vivo experiments. ASME-IEEE T Mech 13(3): 316–324

    Google Scholar 

  14. Bing P, Hui-min X, Bo-qin X, Fu-long D (2006) Performance of sub-pixel registration algorithms in digital image correlation. Meas Sci Technol 17: 1615–1621

    Article  CAS  Google Scholar 

  15. de Oliveira A, Rauschenberg J, Beyersdorff D, Semmler W, Bock M (2008) Automatic passive tracking of an endorectal prostate biopsy device using phase-only cross correlation. Magn Reson Med 59: 1043–1050

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Rea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rea, M., McRobbie, D., Elhawary, H. et al. Sub-pixel localisation of passive micro-coil fiducial markers in interventional MRI. Magn Reson Mater Phy 22, 71–76 (2009). https://doi.org/10.1007/s10334-008-0143-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-008-0143-1

Keywords

Navigation