Skip to main content
Log in

High resolution SE-fMRI in humans at 3 and 7 T using a motor task

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Object

The sensitivity of spin echo (SE) experiments to blood oxygenation level dependent (BOLD) contrast was explored in a study of the same six subjects carried out at 3 and 7 T.

Materials and methods

Multi-slice, single shot, spin echo, echo planar images with a voxel size of 1 ×  1 ×  3 mm3 were acquired at three different echo times, during execution of a simple motor task.

Results

Significant activation was observed at all echo times at both field strengths. Analysis of the fractional signal change as a function of echo time indicated that the change in relaxation rate, ΔR 2, at 7 T was 0.51 ± 0.14 s , which was 1.3 times larger than the value found at 3 T. Measurements of the percentage signal change on activation and temporal signal to noise ratio showed that there was an increase in the BOLD contrast to noise ratio (CNR) at 7 versus 3 T by a factor of 1.9. There was no overlap of areas of significant activation in the SE data acquired at either field strength with the site of large veins.

Conclusion

SE-BOLD CNR in motor cortex was found to increase significantly at 7 T compared with 3 T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BOLD:

Blood oxygenation level dependent

CBV:

Regional blood volume

CBF:

Cerebral blood flow

CMRO2 :

Cerebral metabolic consumption rate

CNR:

Contrast-to-noise ratio

SNR:

Signal-to-noise ratio

EPI:

Echo planar imaging

fMRI:

Functional magnetic resonance imaging

FOV:

Field of view

GM:

Grey matter

GE:

Gradient echo

SE:

Spin echo

ROI:

Region of interest

OVS:

Outer volume suppression

References

  1. Boxerman JL, Bandettini PA, Kwong KK, Baker JR, Davis TL, Rosen BR and Weisskoff RM (1995). The intravascular contribution to fMRI signal change—Monte-Carlo modeling and diffusion-weighted studies in-vivo. Magn Reson Med 34: 4–10

    Article  CAS  PubMed  Google Scholar 

  2. Frahm J, Merboldt KD, Hanicke W, Kleinschmidt A and Boecker H (1994). Brain or vein-oxygenation or flow—on signal physiology in functional MRI of human brain activation. NMR Biomed 7: 45–53

    Article  CAS  PubMed  Google Scholar 

  3. Hoogenraad FGC, Pouwels PJW, Hofman MBM, Reichenbach JR, Sprenger M and Haacke EM (2001). Quantitative differentiation between BOLD models in fMRI. Magn Reson Med 45: 233–246

    Article  CAS  PubMed  Google Scholar 

  4. Turner R (2002). How much cortex can a vein drain? Downstream dilution of activation-related cerebral blood oxygenation changes. Neuroimage 16: 1062–1067

    Article  PubMed  Google Scholar 

  5. Kim SG and Ugurbil K (2003). High-resolution functional magnetic resonance imaging of the animal brain. Methods 30: 28–41

    Article  CAS  PubMed  Google Scholar 

  6. Duong TQ, Yacoub E, Adriany G, Hu XP, Ugurbil K and Kim SG (2003). Microvascular BOLD contribution at 4 and 7 T in the human brain: gradient-echo and spin-echo fMRI with suppression of blood effects. Magn Reson Med 49: 1019–1027

    Article  PubMed  Google Scholar 

  7. Yacoub E, Duong TQ, Vande Moortele PF, Lindquist M, Adriany G, Kim SG, Ugurbil K and Hu XP (2003). Spin-echo fMRI in humans using high spatial resolutions and high magnetic fields. Magn Reson Med 49: 655–664

    Article  PubMed  Google Scholar 

  8. Parkes LM, Schwarzbach JV, Bouts AA, Deckers RHR, Pullens P, Kerskens CM and Norris DG (2005). Quantifying the spatial resolution of the gradient echo and spin echo BOLD response at 3 Tesla. Magn Reson Med 54: 1465–1472

    Article  PubMed  Google Scholar 

  9. van der Zwaag W, Francis S, Head K, Peters A, Gowland P, Morris P, Bowtell R (2007). Field strength dependence of BOLD contrast in motor cortex. Proc Int Soc Magn Reson Med 15: 3324

    Google Scholar 

  10. Yacoub E, Vande Moortele PF, Shmuel A and Ugurbil K (2005). Signal and noise characteristics of Hahn SE and GE BOLD fMRI at 7T in humans. Neuroimage 24: 738–750

    Article  PubMed  Google Scholar 

  11. Duong TQ, Yacoub E, Adriany G, Hu XP, Ugurbil K, Vaughan JT, Merkle H and Kim SG (2002). High-resolution, spin-echo BOLD, and CBF AM at 4 and 7 T. Magn Reson Med 48: 589–593

    Article  PubMed  Google Scholar 

  12. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang YY, De Stefano N, Brady JM and Matthews PM (2004). Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23: S208–S219

    Article  PubMed  Google Scholar 

  13. Jenkinson M, Bannister PR, Brady MJ and Smith SM (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17: 825–841

    Article  PubMed  Google Scholar 

  14. Woolrich MW, Ripley BD, Brady M and Smith SM (2001). Temporal autocorrelation in univariate linear modeling of fMRI data. Neuroimage 14: 1370–1386

    Article  CAS  PubMed  Google Scholar 

  15. Worsley KJ, Evans AC, Marrett S and Neelin P (1992). A 3-dimensional statistical-analysis for CBF activation studies in human brain. J Cereb Blood Flow Metab 12: 900–918

    CAS  PubMed  Google Scholar 

  16. Jenkinson M and Smith S (2001). A global optimisation method for robust affine registration of brain images. Med Image Anal 5: 143–156

    Article  CAS  PubMed  Google Scholar 

  17. Gati JS, Menon RS, Ugurbil K and Butt BK (1997). Experimental determination of the BOLD field strength dependence in vessels and tissue. Magn Reson Med 38: 296–302

    Article  CAS  PubMed  Google Scholar 

  18. Duong TQ, Yacoub E, Adriany G, Hu XP, Anderson P, Vaughan JT, Ugurbil K and Kim SG (2004). Spatial specificity of high-resolution, spin-echo BOLD, and CBF fMRI at 7 T. Magn Reson Med 51: 646–647

    Article  Google Scholar 

  19. Wansapura JP, Holland SK, Dunn RS and Ball WS (1999). NMR relaxation times in the human brain at 3.0 Tesla. Magn Reson Imaging 9: 531–538

    Article  CAS  Google Scholar 

  20. Stanisz GJ, Odrobina EE, Pun J, Escaravage M, Graham SJ, Bronskill MJ and Henkelman RM (2005). T-1, T-2 relaxation and magnetization transfer in tissue at 3T. Magn Reson Med 54: 507–512

    Article  PubMed  Google Scholar 

  21. Triantafyllou C, Hoge RD, Krueger G, Wiggins CJ, Potthast A, Wiggins GC and Wald LL (2005). Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. Neuroimage 26: 243–250

    Article  CAS  PubMed  Google Scholar 

  22. Weisskoff RM (1996). Simple measurement of scanner stability for functional NMR imaging of activation in the brain. Magn Reson Med 36: 643–645

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard W. Bowtell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schäfer, A., van der Zwaag, W., Francis, S.T. et al. High resolution SE-fMRI in humans at 3 and 7 T using a motor task. Magn Reson Mater Phy 21, 113 (2008). https://doi.org/10.1007/s10334-007-0099-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10334-007-0099-6

Keywords

Navigation