Skip to main content

Advertisement

Log in

Optimized quadrature surface coil designs

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Background

Quadrature surface MRI/MRS detectors comprised of circular loop and figure-8 or butterfly-shaped coils offer improved signal-to-noise-ratios (SNR) compared to single surface coils, and reduced power and specific absorption rates (SAR) when used for MRI excitation. While the radius of the optimum loop coil for performing MRI at depth d in a sample is known, the optimum geometry for figure-8 and butterfly coils is not.

Materials and methods

The geometries of figure-8 and square butterfly detector coils that deliver the optimum SNR are determined numerically by the electromagnetic method of moments. Figure-8 and loop detectors are then combined to create SNR-optimized quadrature detectors whose theoretical and experimental SNR performance are compared with a novel quadrature detector comprised of a strip and a loop, and with two overlapped loops optimized for the same depth at 3 T. The quadrature detection efficiency and local SAR during transmission for the three quadrature configurations are analyzed and compared.

Results

The SNR-optimized figure-8 detector has loop radius r 8 ~ 0.6d, so r 8/r 0 ~ 1.3 in an optimized quadrature detector at 3 T. The optimized butterfly coil has side length ~ d and crossover angle of ≥50° at the center.

Conclusions

These new design rules for figure-8 and butterfly coils optimize their performance as linear and quadrature detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoult DI, Chen CN and Sank VJ (1984). Quadrature detection in the laboratory frame. Magn Reson Med 1: 339–353

    Article  CAS  PubMed  Google Scholar 

  2. Chen C, Hoult DI and Sank VJ (1983). Quadrature detection coils — a further sqrt(2) improvement in sensitivity. J Magn Reson 54: 324–327

    CAS  Google Scholar 

  3. Hyde JS, Jesmanowicz A, Grist TM, Froncisz W and Kneeland JB (1987). Quadrature detection surface coil. Magn Reson Med 4: 179–184

    Article  CAS  PubMed  Google Scholar 

  4. Bottomley PA, Hardy CJ, Roemer PB and Mueller OM (1989). Proton-decoupled, Overhauser-enhanced, spatially localized carbon-13 spectroscopy in humans. Magn Reson Med 12: 348–363

    Article  CAS  PubMed  Google Scholar 

  5. Redpath TW (1986). Quadrature rf coil pairs. Magn Reson Med 3: 118–119

    Article  CAS  PubMed  Google Scholar 

  6. Bottomley PA and Roemer PB (1992). Homogeneous tissue model estimates of RF power deposition in human NMR studies. Local elevations predicted in surface coil decoupling. Ann NY Acad Sci 649: 144–159

    Article  CAS  PubMed  Google Scholar 

  7. Guclu CC, Boskamp E, Zheng T, Becerra R and Blawat L (2004). A method for preamplifier-decoupling improvement in quadrature phased-array coils. J Magn Reson Imaging 19: 255–258

    Article  PubMed  Google Scholar 

  8. Edelstein WA, Glover GH, Hardy CJ and Redington RW (1986). The intrinsic signal-to-noise ratio in NMR imaging. Magn Reson Med 3: 604–618

    Article  CAS  PubMed  Google Scholar 

  9. Roemer W, Edelstein WA (1987) Ultimate sensitivity limits of surface coils. In: SMRM 6th Annual Meeting, p 410

  10. Chen CN, Hoult DI (1989) Biomedical magnetic resonance technology. Adam Hilger, Bristol, pp 143, 161

  11. Kumar A and Bottomley PA (2006). Optimizing the intrinsic signal-to-noise ratio of MRI strip detectors. Magn Reson Med 56: 157–166

    Article  PubMed  Google Scholar 

  12. Andreuccetti D, Fossi R, Petrucci C (2002) An Internet resource for calculation of the dielectric properties of body tissues. http://niremf.ifac.cnr.it/tissprop/#refs

  13. Lee RF, Hardy CJ, Sodickson DK and Bottomley PA (2004). Lumped-element planar strip array (LPSA) for parallel MRI. Magn Reson Med 51: 172–183

    Article  PubMed  Google Scholar 

  14. Pozar DM (1998). Microwave engineering. Wiley, New York

    Google Scholar 

  15. Roemer PB, Edelstein WA, Hayes CE, Souza SP and Mueller OM (1990). The NMR phased array. Magn Reson Med 16: 192–225

    Article  CAS  PubMed  Google Scholar 

  16. Grover FW (1973). Inductance calculations. Dover Publications, Mineola

    Google Scholar 

  17. Wang J, Yang QX, Zhang X, Collins CM, Smith MB, Zhu XH, Adriany G, Ugurbil K and Chen W (2002). Polarization of the RF field in a human head at high field: a study with a quadrature surface coil at 7.0 T. Magn Reson Med 48: 362–369

    Article  PubMed  Google Scholar 

  18. Bottomley PA and Andrew ER (1978). RF magnetic field penetration, phase shift and power dissipation in biological tissue: implications for NMR imaging. Phys Med Biol 23: 630–643

    Article  CAS  PubMed  Google Scholar 

  19. Glover GH, Hayes CE, Pelc NJ, Edelstein WA, Mueller OM, Hart HR, Hardy CJ, O’Donnell M and Barber WD (1985). Comparison of linear and circular polarization for magnetic resonance imaging. J Magn Reson 64: 255–270

    CAS  Google Scholar 

  20. Edelstein WA, Bottomley PA and Pfeifer LM (1984). A signal-to-noise calibration procedure for NMR imaging systems. Med Phys 11: 180–185

    Article  CAS  PubMed  Google Scholar 

  21. Bottomley PA (1986). A practical guide to getting NMR spectra in vivo. In: Budinger, TF (eds) Medical magnetic resonance imaging and spectroscopy, a primer, pp 81–95. Society of Magnetic Resonance in Medicine, Berkeley

    Google Scholar 

  22. Wiesinger F, Vande Moortele PF, Adriany G, De Zanche N, Ugurbil K and Pruessmann KP (2004). Parallel imaging performance as a function of field strength—an experimental investigation using electrodynamic scaling. Magn Reson Med 52: 953–964

    Article  PubMed  Google Scholar 

  23. Keltner JR, Carlson JW, Roos MS, Wong ST, Wong TL and Budinger TF (1991). Electromagnetic fields of surface coil in vivo NMR at high frequencies. Magn Reson Med 22: 467–480

    Article  CAS  PubMed  Google Scholar 

  24. Collins CM, Li S and Smith MB (1998). SAR and B1 field distributions in a heterogeneous human head model within a birdcage coil. Specific energy absorption rate. Magn Reson Med 40: 847–856

    Article  CAS  PubMed  Google Scholar 

  25. Davis PL, Shang C, Talagala L and Pasculle AW (1993). Magnetic resonance imaging can cause focal heating in a nonuniform phantom. IEEE Trans Biomed Eng 40: 1324–1327

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ananda Kumar.

Additional information

This work is supported by NIH grant R01 RR15396.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, A., Bottomley, P.A. Optimized quadrature surface coil designs. Magn Reson Mater Phy 21, 41 (2008). https://doi.org/10.1007/s10334-007-0090-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10334-007-0090-2

Keywords

Navigation