Skip to main content
Log in

31P MR spectroscopy and in vitro markers of oxidative capacity in type 2 diabetes patients

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Background: Skeletal muscle mitochondrial function in type 2 diabetes (T2D) is currently being studied intensively. In vivo 31P magnetic resonance spectroscopy (31P MRS) is a noninvasive tool used to measure mitochondrial respiratory function (MIFU) in skeletal muscle tissue. However, microvascular co-morbidity in long-standing T2D can interfere with the 31P MRS methodology.

Aim: To compare 31P MRS-derived parameters describing in vivo MIFU with an in vitro assessment of muscle respiratory capacity and muscle fiber-type composition in T2D patients.

Methods: 31P MRS was applied in long-standing, insulin-treated T2D patients. 31P MRS markers of MIFU were measured in the M. vastus lateralis. Muscle biopsy samples were collected from the same muscle and analyzed for succinate dehydrogenase activity (SDH) and fiber-type distribution.

Results: Several 31P MRS parameters of MIFU showed moderate to good correlations with the percentage of type I fibers and type I fiber-specific SDH activity (Pearson’s R between 0.70 and 0.75). In vivo and in vitro parameters of local mitochondrial respiration also correlated well with whole-body fitness levels (VO 2peak) in these patients (Pearson’s R between 0.62 and 0.90).

Conclusion: Good correlations exist between in vivo and in vitro measurements of MIFU in long-standing insulin-treated T2D subjects, which are qualitatively and quantitatively consistent with previous results measured in healthy subjects. This justifies the use of 31P MRS to measure MIFU in relation to T2D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lowell BB, Shulman GI (2005) Mitochondrial dysfunction and type 2 diabetes. Science 307:384–387

    Article  PubMed  CAS  Google Scholar 

  2. Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350:664–671

    Article  PubMed  CAS  Google Scholar 

  3. Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, DiPietro L, Cline GW, Shulman GI (2003) Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300:1140–1142

    Article  PubMed  CAS  Google Scholar 

  4. Kelley DE, He J, Menshikova EV, Ritov VB (2002) Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51:2944–2950

    Article  PubMed  CAS  Google Scholar 

  5. Short KR, Nair KS, Stump CS (2004) Impaired mitochondrial activity and insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350:2419–2421; author reply 2419–2421

    Article  PubMed  CAS  Google Scholar 

  6. Simoneau JA, Kelley DE (1997) Altered glycolytic and oxidative capacities of skeletal muscle contribute to insulin resistance in NIDDM. J Appl Physiol 83:166–171

    PubMed  CAS  Google Scholar 

  7. van Loon LJ, Goodpaster BH (2006) Increased intramuscular lipid storage in the insulin-resistant and endurance-trained state. Pflugers Arch 451:606–616

    Article  PubMed  CAS  Google Scholar 

  8. Arnold DL, Matthews PM, Radda GK (1984) Metabolic recovery after exercise and the assessment of mitochondrial function in vivo in human skeletal muscle by means of 31P NMR. Magn Reson Med 1:307–315

    Article  PubMed  CAS  Google Scholar 

  9. Mattei JP, Bendahan D, Cozzone P (2004) P-31 magnetic resonance spectroscopy. A tool for diagnostic purposes and pathophysiological insights in muscle diseases. Reumatismo 56:9–14

    PubMed  CAS  Google Scholar 

  10. Radda GK, Odoom J, Kemp G, Taylor DJ, Thompson C, Styles P (1995) Assessment of mitochondrial function and control in normal and diseased states. Biochim Biophys Acta 1271:15–19

    PubMed  Google Scholar 

  11. Kemp GJ, Taylor DJ, Thompson CH, Hands LJ, Rajagopalan B, Styles P, Radda GK (1993) Quantitative analysis by 31P magnetic resonance spectroscopy of abnormal mitochondrial oxidation in skeletal muscle during recovery from exercise. NMR Biomed 6:302–310

    Google Scholar 

  12. Radda GK, Kemp GJ, Styles P, Taylor DJ (1993) Control of oxidative phosphorylation in muscle. Biochem Soc Trans 21(Pt 3):762–764

    PubMed  CAS  Google Scholar 

  13. Arnold DL, Taylor DJ, Radda GK (1985) Investigation of human mitochondrial myopathies by phosphorus magnetic resonance spectroscopy. Ann Neurol 18:189–196

    Article  PubMed  CAS  Google Scholar 

  14. Kemp GJ, Radda GK (1994) Quantitative interpretation of bioenergetic data from 31P and 1H magnetic resonance spectroscopic studies of skeletal muscle: an analytical review. Magn Reson Q 10:43–63

    Google Scholar 

  15. Larson-Meyer DE, Newcomer BR, Hunter GR, Joanisse DR, Weinsier RL, Bamman MM (2001) Relation between in vivo and in vitro measurements of skeletal muscle oxidative metabolism. Muscle Nerve 24:1665–1676

    Article  PubMed  CAS  Google Scholar 

  16. McCully KK, Fielding RA, Evans WJ, Leigh JS, Jr, Posner JD (1993) Relationships between in vivo and in vitro measurements of metabolism in young and old human calf muscles. J Appl Physiol 75:813–819

    PubMed  CAS  Google Scholar 

  17. Argov Z, De Stefano N, Taivassalo T, Chen J, Karpati G, Arnold DL (1997) Abnormal oxidative metabolism in exercise intolerance of undetermined origin. Neuromuscul Disord 7:99–104

    Article  PubMed  CAS  Google Scholar 

  18. Bendahan D, Desnuelle C, Vanuxem D, Confort-Gouny S, Figarella-Branger D, Pellissier JF, Kozak-Ribbens G, Pouget J, Serratrice G, Cozzone PJ (1992) 31P NMR spectroscopy and ergometer exercise test as evidence for muscle oxidative performance improvement with coenzyme Q in mitochondrial myopathies. Neurology 42: 1203–1208

    Google Scholar 

  19. Massie BM, Conway M, Yonge R, Frostick S, Sleight P, Ledingham J, Radda G, Rajagopalan B (1987) 31P nuclear magnetic resonance evidence of abnormal skeletal muscle metabolism in patients with congestive heart failure. Am J Cardiol 60:309–315

    Google Scholar 

  20. Pipinos II, Shepard AD, Anagnostopoulos PV, Katsamouris, A, Boska MD (2000) Phosphorus 31 nuclear magnetic resonance spectroscopy suggests a mitochondrial defect in claudicating skeletal muscle. J Vasc Surg 31:944–952

    Article  PubMed  CAS  Google Scholar 

  21. Bendahan D, Confort-Gouny S, Kozak-Reiss G, Cozzone PJ (1990) Heterogeneity of metabolic response to muscular exercise in humans. New criteria of invariance defined by in vivo phosphorus-31 NMR spectroscopy. FEBS Lett 272:155–158

    Article  PubMed  CAS  Google Scholar 

  22. Iotti S, Lodi R, Frassineti C, Zaniol P, Barbiroli B (1993) In vivo assessment of mitochondrial functionality in human gastrocnemius muscle by 31P MRS The role of pH in the evaluation of phosphocreatine and inorganic phosphate recoveries from exercise. NMR Biomed 6:248–253

    Google Scholar 

  23. Lodi R, Kemp GJ, Iotti S, Radda GK, Barbiroli B (1997) Influence of cytosolic pH on in vivo assessment of human muscle mitochondrial respiration by phosphorus magnetic resonance spectroscopy. Magn Reson Mator Phy. 5:165–171

    Article  CAS  Google Scholar 

  24. Roussel M, Bendahan D, Mattei JP, Le Fur Y, Cozzone PJ (2000) 31P magnetic resonance spectroscopy study of phosphocreatine recovery kinetics in skeletal muscle: the issue of intersubject variability. Biochim Biophys Acta 1457:18–26

    Google Scholar 

  25. Quistorff B, Johansen L, Sahlin K (1993) Absence of phosphocreatine resynthesis in human calf muscle during ischaemic recovery. Biochem J 291(Pt 3):681–686

    PubMed  CAS  Google Scholar 

  26. Haseler LJ, Lin AP, Richardson RS (2004) Skeletal muscle oxidative metabolism in sedentary humans: 31P-MRS assessment of O2 supply and demand limitations. J Appl Physiol 97:1077–1081

    Google Scholar 

  27. Home P (2005) Contributions of basal and post-prandial hyperglycaemia to micro- and macrovascular complications in people with type 2 diabetes. Curr Med Res Opin 21:989–998

    Article  PubMed  Google Scholar 

  28. Young JL, Pendergast DR, Steinbach J (1991) Oxygen transport and peripheral microcirculation in long-term diabetes. Proc Soc Exp Biol Med 196:61–68

    PubMed  CAS  Google Scholar 

  29. Marin P, Anersson B, Krotkiewski M, Bjorntorp P (1994) Muscle fiber composition and capillary density in women and men with NIDDM. Diabetes Care 17:382–386

    Article  PubMed  CAS  Google Scholar 

  30. Girach A, Vignati L (2006) Diabetic microvascular complications–can the presence of one predict the development of another? J Diabetes Complicat 20:228–237

    Article  PubMed  Google Scholar 

  31. Alberti KG, Zimmet PZ (1998) Definition, diagnosis and classification of diabetes mellitus and its complications Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 15:539–553

    Article  PubMed  CAS  Google Scholar 

  32. Zhang YY, Johnson MC, 2nd, Chow N, Wasserman K (1991) Effect of exercise testing protocol on parameters of aerobic function. Med Sci Sports Exerc 23:625–630

    Google Scholar 

  33. Weber CT, Janicki JS, McElroy PA (1986) Cardiopulmonary exercise testing (CPX) testing. W.B. Saunders, Philadelphia

    Google Scholar 

  34. Richardson RS, Frank LR, Haseler LJ (1998) Dynamic knee-extensor and cycle exercise: functional MRI of muscular activity. Int J Sports Med 19:182–187

    Article  PubMed  CAS  Google Scholar 

  35. Vanhamme L, van den Boogaart A, Van Huffel S (1997) Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 129:35–43

    Article  PubMed  CAS  Google Scholar 

  36. Taylor DJ, Styles P, Matthews PM, Arnold DA, Gadian DG, Bore P, Radda GK (1986) Energetics of human muscle: exercise-induced ATP depletion. Magn Reson Med 3:44–54

    Article  PubMed  CAS  Google Scholar 

  37. Taylor DJ, Bore PJ, Styles P, Gadian DG, Radda GK (1983) Bioenergetics of intact human muscle. A 31P nuclear magnetic resonance study. Mol Biol Med 1:77–94

    Google Scholar 

  38. Lawson JW, Veech RL (1979) Effects of pH and free Mg2+ on the K eq of the creatine kinase reaction and other phosphate hydrolyses and phosphate transfer reactions. J Biol Chem 254:6528–6537

    PubMed  CAS  Google Scholar 

  39. Boska M (1994) ATP production rates as a function of force level in the human gastrocnemius/soleus using 31P MRS. Magn Reson Med 32:1–10

    Google Scholar 

  40. Kemp GJ, Thompson CH, Barnes PR, Radda GK (1994) Comparisons of ATP turnover in human muscle during ischemic and aerobic exercise using 31P magnetic resonance spectroscopy. Magn Reson Med 31:248–258

    Google Scholar 

  41. Cho M, Webster SG, Blau HM (1993) Evidence for myoblast-extrinsic regulation of slow myosin heavy chain expression during muscle fiber formation in embryonic development. J Cell Biol 121:795–810

    Article  PubMed  CAS  Google Scholar 

  42. Gosker HR, van Mameren H, van Dijk PJ, Engelen MP, van der Vusse GJ, Wouters EF, Schols AM (2002) Skeletal muscle fibre-type shifting and metabolic profile in patients with chronic obstructive pulmonary disease. Eur Respir J 19:617–625

    Article  PubMed  CAS  Google Scholar 

  43. Argov Z, De Stefano N, Arnold DL (1996) ADP recovery after a brief ischemic exercise in normal and diseased human muscle—a 31P MRS study. NMR Biomed 9:165–172

    Google Scholar 

  44. Richardson RS (1998) Oxygen transport: air to muscle cell. Med Sci Sports Exerc 30:53–59

    PubMed  CAS  Google Scholar 

  45. Kingwell BA, Formosa M, Muhlmann M, Bradley SJ, McConell GK (2003) Type 2 diabetic individuals have impaired leg blood flow responses to exercise: role of endothelium-dependent vasodilation. Diabetes Care 26:899–904

    Article  PubMed  Google Scholar 

  46. Rasmussen UF, Rasmussen HN, Krustrup P, Quistorff B, Saltin B, Bangsbo J (2001) Aerobic metabolism of human quadriceps muscle: in vivo data parallel measurements on isolated mitochondria. Am J Physiol Endocrinol Metab 280: E301–307

    PubMed  CAS  Google Scholar 

  47. Scheuermann-Freestone M, Madsen PL, Manners D, Blamire AM, Buckingham RE, Styles P, Radda GK, Neubauer S, Clarke K (2003) Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes. Circulation 107:3040–3046

    Article  PubMed  CAS  Google Scholar 

  48. Kent-Braun JA, Ng AV (2000) Skeletal muscle oxidative capacity in young and older women and men. J Appl Physiol 89:1072–1078

    PubMed  CAS  Google Scholar 

  49. Conley KE, Jubrias SA, Esselman PC (2000) Oxidative capacity and ageing in human muscle. J Physiol 526 (Pt 1):203–210

    Article  PubMed  CAS  Google Scholar 

  50. Schunk K, Pitton M, Duber C, Kersjes W, Schadmand-Fischer S, Thelen M (1999) Dynamic phosphorus-31 magnetic resonance spectroscopy of the quadriceps muscle: effects of age and sex on spectroscopic results. Invest Radiol 34:116–125

    Article  PubMed  CAS  Google Scholar 

  51. Giudicelli JF, Richer C, Richard C, Thuillez C (1991) Angiotensin converting enzyme inhibition. Systemic and regional hemodynamics in rats and humans. Am J Hypertens 4:258S–262S

    CAS  Google Scholar 

  52. Scheen AJ (2004) Renin-angiotensin system inhibition prevents type 2 diabetes mellitus Part 2. Overview of physiological and biochemical mechanisms. Diabetes Metab 30:498–505

    Article  PubMed  CAS  Google Scholar 

  53. Bahi L, Koulmann N, Sanchez H, Momken I, Veksler V, Bigard AX, Ventura-Clapier R (2004) Does ACE inhibition enhance endurance performance and muscle energy metabolism in rats?. J Appl Physiol 96:59–64

    Article  PubMed  CAS  Google Scholar 

  54. Challiss RA, Hayes DJ, Radda GK (1988) A 31P-NMR study of the acute effects of altered beta-adrenoceptor stimulation on the bioenergetics of skeletal muscle during contraction. Biochem Pharmacol 37:4653–4659

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. E. Praet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Praet, S.F.E., Feyter, H.M.M.D., Jonkers, R.A.M. et al. 31P MR spectroscopy and in vitro markers of oxidative capacity in type 2 diabetes patients. Magn Reson Mater Phy 19, 321–331 (2006). https://doi.org/10.1007/s10334-006-0060-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-006-0060-0

Keywords

Navigation