Skip to main content

Advertisement

Log in

1H-NMR metabolic profiling of human neonatal urine

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Object: The measurement of different urine components and their changes over time may provide comprehensive and early information about perinatal metabolic processes and physiological changes. We hypothesized that 1 HNMR-spectroscopy generating a complex spectral profile without pre-selection of urinary metabolites could identify metabolites determining the neonatal physiological status and discriminating between different metabolic states.

Materials and Methods: We studied spot urine of three groups of neonates (healthy term-born, term-born with non-specific bacterial infections, and preterm neonates) for the first 6 days of life using 1 HNMR-spectroscopy. In the group of healthy neonates metabolites changing were identified and their excretion patterns compared between groups.

Results: Six metabolites indicating physiological changes were identified: N-methylnicotinamide (NAD +-pathway), formate, hippurate, betaine (kidney development), taurine (neuronal development), and bile acids (hepatic clearance). While the dynamic changes over the first 6 days were the same for all metabolites in both groups of term-born neonates, the excretion of N-methylnicotinamide and taurine was significantly higher in preterm neonates compared to healthy term neonates and neonates with bacterial infections from the third day after birth (P < 0.05).

Conclusion: Urine analysis using 1 HNMR-spectroscopy could identify markers for perinatal metabolic changes. Further studies have to clarify if the proposed physiological interpretation will correlate with long-term physiological development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barker DJ, Eriksson JG, Forsen T, Osmond C (2002) Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol 31(6):1235–1239

    Article  PubMed  CAS  Google Scholar 

  2. Drukker A, Guignard JP (2002) Renal aspects of the term and preterm infant: a selective update. Curr Opin Pediatr 14(2):175–182

    Article  PubMed  Google Scholar 

  3. Hoy WE, Hughson MD, Bertram JF, Dougla-Denton R, Amann K (2005) Nephron number, hypertension, renal disease, and renal failure. J Am Soc Nephrol 16(9):2557–2564

    Article  PubMed  Google Scholar 

  4. Hughson M, Farris AB, 3rd, Douglas-Denton R, Hoy WE, Bertram JF (2003) Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int 63(6):2113–2122

    Google Scholar 

  5. McMillen IC, Robinson JS (2005) Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev 85(2):571–633

    Article  PubMed  CAS  Google Scholar 

  6. Gillman MW (2005) Developmental origins of health and disease. N Engl J Med 353(17):1848–1850

    Article  PubMed  CAS  Google Scholar 

  7. Foxall PJ, Bewley S, Neild GH, Rodeck CH, Nicholson JK (1995) Analysis of fetal and neonatal urine using proton nuclear magnetic resonance spectroscopy. Arch Dis Child Fetal Neonatal Ed 73(3):F153–F157

    Article  PubMed  CAS  Google Scholar 

  8. Beckonert O, Monnerjahn J, Bonk U, Leibfritz D (2003) Visualizing metabolic changes in breast-cancer tissue using 1H-NMR spectroscopy and self-organizing maps. NMR Biomed 16(1):1–11

    Article  PubMed  CAS  Google Scholar 

  9. Bollard ME, Stanley EG, Lindon JC, Nicholson JK, Holmes E (2005) NMR-based metabonomic approaches for evaluating physiological influences on biofluid composition. NMR Biomed 18(3):143–162

    Article  PubMed  CAS  Google Scholar 

  10. Nasseri K, Daley-Yates PT (1990) A comparison of N-1-methylnicotinamide clearance with 5 other markers of renal function in models of acute and chronic renal failure. Toxicol Lett 53(1–2):243–245

    Article  PubMed  CAS  Google Scholar 

  11. Kamimura S, Eguchi K, Sekiba K (1991) Tryptophan and its metabolite concentrations in human plasma and breast milk during the perinatal period. Acta Med Okayama 45(2):101–106

    PubMed  CAS  Google Scholar 

  12. Mellor AL, Munn DH (2001) Tryptophan catabolism prevents maternal T cells from activating lethal anti-fetal immune responses. J Reprod Immunol 52(1–2):5–13

    Article  PubMed  CAS  Google Scholar 

  13. Sturman JA (1986) Nutritional taurine and central nervous system development. Ann N Y Acad Sci 477:196–213

    Article  PubMed  CAS  Google Scholar 

  14. Aerts L, Van Assche FA (2002) Taurine and taurine-deficiency in the perinatal period. J Perinat Med 30(4):281–286

    Article  PubMed  CAS  Google Scholar 

  15. Ghisolfi J (1987) Taurine and the premature. Biol Neonate 52(Suppl 1):78–86

    PubMed  CAS  Google Scholar 

  16. Ghisolfi J, Nguyen VB, Thouvenot JP, Rolland M, Putet G, Lapalu-Traon C (1989) Taurine in developing brain, liver and muscle in infants. Biol Neonate 56(4):186–191

    PubMed  CAS  Google Scholar 

  17. Jones DP, Chesney RW (1992) Development of tubular function. Clin Perinatol 19(1):33–57

    PubMed  CAS  Google Scholar 

  18. Chesney RW, Zelikovic I, Jones DP, Budreau A, Jolly K (1990) The renal transport of taurine and the regulation of renal sodium-chloride-dependent transporter activity. Pediatr Nephrol 4(4):399–407

    Article  PubMed  CAS  Google Scholar 

  19. Zelikovic I, Chesney RW (1989) Development of renal amino acid transport systems. Semin Nephrol 9(1):49–55

    PubMed  CAS  Google Scholar 

  20. Yamato Y, Kimura A, Inoue T, Kurosawa T, Kato H (2001) Fetal bileacid metabolism: analysis of urinary 3beta-monohydroxy-delta(5) bile acid in preterm infants. Biol Neonate 80(1):19–25

    Article  PubMed  CAS  Google Scholar 

  21. Boehm G, Braun W, Moro G, Minoli I (1997) Bile acid concentrationsin serum and duodenal aspirates of healthy preterm infants: effects of gestational and postnatal age. Biol Neonate 71(4):207–214

    Article  PubMed  CAS  Google Scholar 

  22. Pineiro-Carrero VM, Pineiro EO (2004) Liver. Pediatrics 113(4 Suppl):1097–1106

    PubMed  Google Scholar 

  23. Moeckel GW, Lien YH (1997) Distribution of de novo synthesized betaine in rat kidney: role of renal synthesis on medullary betaine accumulation. Am J Physiol 272(1 Pt 2):F94–F99

    PubMed  CAS  Google Scholar 

  24. Pummer S, Dantzler WH, Lien YH, Moeckel GW, Volker K, Silbernagl S (2000) Reabsorption of betaine in Henle’s loops of rat kidney in vivo. Am J Physiol Renal Physiol 278(3):F434–F439

    PubMed  CAS  Google Scholar 

  25. Velzing-Aarts FV, Holm PI, Fokkema MR, van der Dijs FP, Ueland PM, Muskiet FA (2005) Plasma choline and betaine and their relation to plasma homocysteine in normal pregnancy. Am J Clin Nutr 81(6):1383–1389

    PubMed  CAS  Google Scholar 

  26. Davies SEC, Woolf DA, Chalmers RA, Rafter JEM, Iles RA (1992) Proton nmr studies of betaine excretion in the human neonate: consequences for choline and methyl group supply. J Nutri Biochem 3(10):523

    Article  CAS  Google Scholar 

  27. Davies SE, Chalmers RA, Randall EW, Iles RA (1988) Betaine metabolism in human neonates and developing rats. Clin Chim Acta 178(3):241–249

    Article  PubMed  CAS  Google Scholar 

  28. Burns SP, Holmes HC, Chalmers RA, Johnson A, Iles RA (1998) Proton NMR spectroscopic analysis of multiple acyl-CoA dehydrogenase deficiency—capacity of the choline oxidation pathway for methylation in vivo. Biochim Biophys Acta 1406(3):274–282

    PubMed  CAS  Google Scholar 

  29. Messana I, Forni F, Ferrari F, Rossi C, Giardina B, Zuppi C (1998) Proton nuclear magnetic resonance spectral profiles of urine in type II diabetic patients. Clin Chem 44(7):1529–1534

    PubMed  CAS  Google Scholar 

  30. Zuppi C, Messana I, Forni F, Rossi C, Pennacchietti L, Ferrari F, Giardina B (1997) 1H NMR spectra of normal urines: reference ranges of the major metabolites. Clin Chim Acta 265(1):85–97

    Article  PubMed  CAS  Google Scholar 

  31. Alcorn J, McNamara PJ (2002) Ontogeny of hepatic and renal systemic clearance pathways in infants: part I. Clin Pharmacokinet 41(12):959–998

    Article  PubMed  CAS  Google Scholar 

  32. Musso CG, Ghezzi L, Ferraris J (2004) Renal physiology in newborns and old people: similar characteristics but different mechanisms. Int Urol Nephrol 36(2):273–276

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Leibfritz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trump, S., Laudi, S., Unruh, N. et al. 1H-NMR metabolic profiling of human neonatal urine. Magn Reson Mater Phy 19, 305–312 (2006). https://doi.org/10.1007/s10334-006-0058-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-006-0058-7

Keywords

Navigation