Skip to main content
Log in

Frequency distribution and signal formation around a vessel

  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

We describe the NMR signal formation properties of a single vessel. Instead of assuming the frequency distribution to be a simple Lorentzian or Gaussian one, we take into account that the frequency distribution around the vessel is a complex function. Considering the static dephasing regime we find a relationship between signal formation and frequency distribution. Analytical expressions for the frequency distribution in a voxel and the magnetization decay are obtained. In the case of small volume fractions of blood and week magnetic fields the results can be used for describing signal formation processes in a vascular network. A relationship between the frequency distribution and the properties of the vascular network is derived. The magnetization decay in different time regimes is discussed. The result is relevant for describing signal formation processes around a vessel for arbitrary pulse sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kennan RP, Zhong J, Gore JC (1994) Intravascular susceptibility contrast mechanisms in tissues. Magn Reson Med 31:9–21

    PubMed  Google Scholar 

  2. Yablonskiy DA, Haacke EM (1994) Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med 32:749–763

    PubMed  Google Scholar 

  3. Yablonskiy DA, Reinus WR, Stark H, Haacke EM (1997) Quantitation of T2' anisotropic effects on magnetic resonance bone mineral density measurement. Magn Reson Med 37:214–221

    PubMed  Google Scholar 

  4. Yablonskiy DA (1998) Quantitation of intrinsic magnetic susceptibility-related effects in a tissue matrix. Phantom study. Magn Reson Med 39:417–428

    PubMed  Google Scholar 

  5. Bauer WR, Nadler W, Bock M, Schad LR, Wacker C, Hartlep A, Ertl G (1999) Theory of the BOLD effect in the capillary region: an analytical approach for the determination of T2 in the capillary network of myocardium. Magn Reson Med 41:51–62

    Article  PubMed  Google Scholar 

  6. Bauer WR, Nadler W, Bock M, Schad LR, Wacker C, Hartlep A, Ertl G (1999) Theory of coherent and incoherent nuclear spin dephasing in the heart. Phys Rev Lett 83:4215–4218

    Article  Google Scholar 

  7. Bauer WR, Nadler W, Bock M, Schad LR, Wacker C, Hartlep A, Ertl G (1999) The relationship between T2* and T2 in myocardium. Magn Reson Med 41:1004–1010

    Article  Google Scholar 

  8. Kiselev VG, Posse S (1999) Analytical model of susceptibility-induced MR signal dephasing: effect of diffusion in a microvascular network. Magn Reson Med 41:499–509

    Article  PubMed  Google Scholar 

  9. Kiselev VG, Novikov DS (2002) Transverse NMR relaxation as a probe of mesoscopic structure. Phys Rev Lett 89:278101

    Article  PubMed  Google Scholar 

  10. Kiselev VG (2003) Calculation of diffusion effect for arbitrary pulse sequences. J Magn Reson 164:205–211

    Article  PubMed  Google Scholar 

  11. Jensen JH, Chandra R (2000) NMR relaxation in tissues with weak magnetic inhomogeneities. Magn Reson Med 44:144–156

    Article  PubMed  Google Scholar 

  12. Jensen JH, Chandra R (2000) MR imaging of microvasculature. Magn Reson Med 44:224–230

    Article  PubMed  Google Scholar 

  13. Freeman R, Hill HDW (1971) Phase and intensity anomalies in Fourier transform NMR. J Magn Reson 4:366–383

    Google Scholar 

  14. Gyngell ML (1989) The steady-state signals in short-repetition-time sequences. J Magn Reson 81:474–483

    Google Scholar 

  15. Scheffler K, Hennig J (2003) Is TrueFISP a gradient-echo or a spin-echo sequence? Magn Reson Med 49(2):395–397

    Article  PubMed  Google Scholar 

  16. Haase A, Frahm J, Matthaei D, Hanicke W, Merboldt K (1986) FLASH imaging: rapid NMR imaging using low flip-angle pulses. J Magn Reson 67:258–266

    Google Scholar 

  17. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872

    PubMed  Google Scholar 

  18. Mattiello J, Basser PJ, Le Bihan D (1997) The b matrix in diffusion tensor echo planar imaging. Magn Reson Med 37:292–300

    PubMed  Google Scholar 

  19. Reichenbach JR, Haacke EM (2001) High-resolution BOLD venographic imaging: a window into brain function. NMR Biomed 14(7–8):453–467

    Google Scholar 

  20. Cheng YC, Haacke EM, Yu YJ (2001) An exact form for the magnetic field density of states for a dipole. Magn Reson Imag 19(7):1017–1023

    Article  Google Scholar 

  21. Bakker CJG, Bhagwandien R, Moerland MA, Ramos LMP (1994) Simulation of susceptibility artifacts in 2D and 3D Fourier transform spin-echo and gradient-echo magnetic resonance imaging. Magn Reson Imag 12:767–774

    Article  Google Scholar 

  22. Haacke EM, Brown RW, Thompson MR, Venkatesan R (1999) Magnetic resonance imaging: physical principles and sequence design. Wiley, New York

    Google Scholar 

  23. Landau LD, Lifshitz EM (1999) Course of theoretical physics, vol 5, 2nd edn. Pergamon, Oxford

  24. Durney CH, Bertolina JA, Ailion DC, Christman R, Cutillo AG, Morris AH, Hashemi S (1989) Calculation and interpretation of inhomogeneous line broadening in models of lungs and other heterogeneous structures. J Magn Reson 85:554–570

    Google Scholar 

  25. Seppenwoolde JH, van Zijtveld M, Bakker CJ (2005) Spectral characterization of local magnetic field inhomogeneities. Phys Med Biol 50:361–372

    Article  PubMed  Google Scholar 

  26. Zimmerman JR, Foster MR (1957) Standardization of N.M.R. high resolution spectra. J Phys Chem 61:282–289

    Article  Google Scholar 

  27. Scheffler K, Seifritz E, Bilecen D, Venkatesan R, Hennig J, Deimling M, Haacke EM (2001) Detection of BOLD changes by means of a frequency-sensitive trueFISP technique: preliminary results. NMR Biomed 14(7-8):490–496

    Google Scholar 

  28. Oberhettinger F (1972) Tables of bessel transforms. Springer, Berlin Heidelberg New York

  29. Nadler W, Schulten K (1985) Generalized moment expansion for Brownian relaxation processes. J Chem Phys 82:151–160

    Article  Google Scholar 

  30. Bauer WR, Nadler W (2002) Spin dephasing in the strong collision approximation. Phys Rev E 65:066123

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.H. Ziener.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziener, C., Bauer, W. & Jakob, P. Frequency distribution and signal formation around a vessel. MAGMA 18, 225–230 (2005). https://doi.org/10.1007/s10334-005-0122-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-005-0122-8

Keywords

Navigation