Skip to main content

Advertisement

Log in

Nutrient management impacts on net ecosystem carbon budget and energy flow nexus in intensively cultivated cropland ecosystems of north-western India

  • Article
  • Published:
Paddy and Water Environment Aims and scope Submit manuscript

Abstract

Nutrient management has led to unprecedented increase in crop production, but with significant carbon (C) trade-off that has close nexus with energy flow. We quantified the impacts of nutrient management on emission of greenhouse gases, net ecosystem C budget (NECB) and energy flow in three cropland ecosystems (rice–wheat, maize–wheat and cotton–wheat). Carbon dioxide (CO2) and nitrous oxide (N2O) emissions were significantly (p < 0.05) higher in rice than cotton, while maize ecosystem was in-between. The greenhouse gas intensity was significantly higher for rice–wheat (by 0.2 kg CO2e kg−1 grain) and maize–wheat (by 0.1 kg CO2e kg−1 grain), compared with cotton–wheat. The higher carbon emission ratio for maize–wheat (9.59) and rice–wheat (8.07) suggested their higher potential to fix C per unit loss, compared with cotton–wheat (7.03). Atmospheric CO2 assimilated into net primary production (NPP) totalled 14.1 ± 0.18, 11.5 ± 0.13 and 9.7 ± 0.13 Mg C ha−1 for rice–wheat, maize–wheat and cotton–wheat ecosystems, respectively. With an estimated net ecosystem exchange of 9.5 ± 0.29, 5.8 ± 0.19 and 2.7 ± 0.23 Mg C ha−1, respectively, for three ecosystems, rice–wheat (2427 kg C ha−1 year−1) had significantly higher NECB, compared with maize–wheat (27.1 kg C ha−1 year−1) and cotton–wheat (− 3834 kg C ha−1 year−1). Rice–wheat had significantly higher C addition in soil organic carbon (SOC) pool, compared with other two ecosystems. Conversely, cotton–wheat had depletion of SOC pool (− 817 kg C ha−1). Although the three ecosystems did not differ significantly for fertilizer-related energy input (EI), energy output (EO), energy ratio (ER) and net energy gain were significantly higher for cotton–wheat, compared with other ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CEE:

Carbon equivalent emission

CER:

Carbon emission ratio

CH4 :

Methane

CO2 :

Carbon dioxide

E I :

Energy input

E O :

Energy output

E P :

Energy productivity

E R :

Energy ratio

GHGI:

Greenhouse gas intensity

GHGs:

Greenhouse gases

GPP:

Gross primary production

GRAFC:

Gross returns above the fertilizer cost

GWP:

Global warming potential

K2O:

Potassium

MSP:

Minimum support price

N:

Nitrogen

N2O:

Nitrous oxide

NECB:

Net ecosystem carbon budget

NEE:

Net ecosystem exchange

NEG:

Net energy gain

NEP:

Net ecosystem productivity

NPP:

Net primary production

P2O5 :

Phosphorus

R A :

Autotrophic respiration

R E :

Ecosystem respiration

REY:

Rice equivalent yield

R H :

Soil heterotrophic respiration

E S :

Specific energy

SOC:

Soil organic carbon

References

  • Alam MS, Alam MR, Islam KK (2005) Energy flow in agriculture: Bangladesh. Am J Environ Sci 1:213–220

    Google Scholar 

  • Alberti G, Vedove GD, Zuiliani M, Peressotti A, Castaldi S, Zerbi G (2010) Changes in CO2 emissions after crop conversion from continuous maize to alfalfa. Agric Ecosyst Environ 136(1):139–147

    CAS  Google Scholar 

  • Ammann C, Flechard C, Leifeld J, Neftel A, Fuhrer J (2007) The carbon budget of newly established temperate grassland depends on management intensity. Agric Ecosyst Environ 121(1/2):5–20

    CAS  Google Scholar 

  • Baker JM, Griffis TJ (2005) Examining strategies to improve the carbon balance of corn/soybean agriculture using eddy covariance and mass balance techniques. Agric Forest Meteorol 128:163–177

    Google Scholar 

  • Banger K, Tian H, Lu C (2012) Do nitrogen fertilizers stimulate or inhibit methane emissions from rice fields? Glob Change Biol 18:3259–3267

    Google Scholar 

  • Benbi DK (2013) Greenhouse gas emissions from agricultural soils: sources and mitigation potential. J Crop Improv 27:752–772

    CAS  Google Scholar 

  • Benbi DK (2018) Carbon footprint and agricultural sustainability nexus in an intensively cultivated region of Indo-Gangetic Plains. Sci Total Environ 644:611–623

    CAS  PubMed  Google Scholar 

  • Benbi DK, Brar JS (2009) A 25-year record of carbon sequestration and soil properties in intensive agriculture. Agron Sustain Develop 29:257–265

    CAS  Google Scholar 

  • Benbi DK, Toor AS, Kumar S (2012) Management of organic amendments in rice-wheat cropping system determines the pool where carbon is sequestered. Plant Soil 360:145–162

    CAS  Google Scholar 

  • Benbi DK, Toor AS, Brar K, Dhall C (2019) Soil respiration in relation to cropping sequence, nutrient management and environmental variables. Arch Agron Soil Sci. https://doi.org/10.1080/03650340.2019.1701188

    Article  Google Scholar 

  • Beri V, Sidhu BS, Gupta AP, Tiwari RC, Pareek RP, Rupela OP, Khera R, Singh J (2003) Organic resources of a part of Indo-Gangetic Plain and their utilization. Department of Soils, Punjab Agric Univ., Ludhiana, p 93

    Google Scholar 

  • Béziat P, Ceschia E, Dedieu G (2009) Carbon balance of a three crop succession over two cropland sites in South West France. Agric For Meteorol 149:1628–1645

    Google Scholar 

  • Bhatia A, Pathak H, Jain N, Singh PK, Singh AK (2005) Global warming potential of manure amended soils under rice–wheat system in the Indo-Gangetic plains. Atmos Environ 39:6976–6984

    CAS  Google Scholar 

  • Bronson KF, Cassman KG, Wassmann R, Olk DC, Noordwijk M, van Garrity DP (1998) Soil carbon dynamics in different cropping systems in principal ecoregions of Asia. In: Lal R, Kimble JM, Follett RF, Stewart BA (eds) Management of carbon sequestration in soil. CRC Press, Boca Raton, pp 35–57

    Google Scholar 

  • Cai ZC, Shan Y, Xu H (2007) Effects of nitrogen fertilization on CH4 emissions from rice fields. Soil Sci Plant Nutr 53:353–361

    CAS  Google Scholar 

  • Ceschia E, Béziat P, Dejoux JF, Aubinet M, Bernhofer Ch, Bodson B, Buchmann N, Carrara A, Cellier P, Di Tommasi P, Elbers JA, Eugster W, Grünwald T, Jacobs JM, Jans WWP, Jones M, Kutsch W, Lanigan G, Magliulo E, Marloie O, Moors EJ, Moureaux C, Olioso A, Osborne B, Sanz MJ, Saunders M, Smith P, Soegaard H, Wattenbach M (2010) Management effects on net ecosystem carbon and GHG budgets at European crop sites. Agric Ecosyst Environ 139:363–383

    Google Scholar 

  • Chapin FS, Woodwell GM, Randerson JT, Rastetter EB, Lovett GM, Baldocchi DD, Clark DA, Harmon ME, Schimel DS, Valentini R, Wirth C, Aber JD, Cole JJ, Goulden ML, Harden JW, Heimann M, Howarth RW, Matson PA, McGuire AD, Melillo JM, Mooney HA, Neff JC, Houghton RA, Pace ML, Ryan MG, Running SW, Sala OE, Schlesinger WH, Schulze ED (2006) Reconciling carbon-cycle concepts terminology, and methods. Ecosystems 9(7):1041–1050

    CAS  Google Scholar 

  • Devasenapathy P, Senthilkumar G, Shanmugam PM (2009) Energy management in crop production. Indian J Agron 54:80–90

    Google Scholar 

  • Du Q, Liu HZ (2013) Seven years of carbon dioxide exchange over a degraded grassland and a cropland with maize ecosystems in a semiarid area of China. Agric Ecosyst Environ 173:1–12

    Google Scholar 

  • FAO (2011) The state of the world’s land and water resources for food and agriculture (SOLAW)-managing systems at risk. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Gao X, Lv A, Wang S, Su L, Zhou P, An Y (2016) Greenhouse gas intensity and net ecosystem carbon budget following the application of green manures in rice paddies. Nutr Cycl Agroecosyst 106:169–183

    CAS  Google Scholar 

  • Gao X, Gu F, Hao W, Mei X, Li H, Gong D, Mao L, Zhang Z (2017) Carbon budget of a rainfed spring maize cropland with straw returning on the Loess Plateau, China. Sci Total Environ 586:1193–1203

    CAS  PubMed  Google Scholar 

  • Grace PR, Harrington L, Jain MC, Robertson GP (2003) Long term sustainability of tropical and subtropical rice–wheat system: an environmental perspective. In: Ladha JK (ed) Improving the productivity and sustainability of rice–wheat systems: issues and impacts. ASA Special Publication 65. CSSA and SSSA, Madison, pp 27–41

    Google Scholar 

  • Grant RF, Arkebauer TJ, Dobermann A, Hubbard KG, Schimelfenig TT, Suyker AE, Verma SB, Walters DT (2007) Net biome productivity of irrigated and rainfed maize soybean rotations: modeling vs. measurements. Agron J 99(6):1404–1423

    CAS  Google Scholar 

  • Gregory PJ (2006) Roots rhizosphere and soil: the route to a better understanding of soil science? Eur J Soil Sci 57(1):2–12

    Google Scholar 

  • Helander CA, Delin K (2004) Evaluation of farming systems according to valuation indices developed within a European network on integrated and ecological arable farming systems. Eur J Agron 21(1):53–67

    Google Scholar 

  • Hollinger SE, Bernacchi CJ, Meyers TP (2005) Carbon budget of mature no-till ecosystem in North Central Region of the United States. Agric Forest Meteorol 130:59–69

    Google Scholar 

  • Huang Y, Sun W (2006) Changes in topsoil organic carbon of croplands in mainland China over the last two decades. China Sci Bull 51(15):1785–1803

    CAS  Google Scholar 

  • Huang Y, Zhang W, Sun W, Zheng X (2007) Net primary production of Chinese croplands from 1950 to 1999. Ecol Appl 17(3):692–701

    PubMed  Google Scholar 

  • Huang T, Gao B, Christie P, Ju X (2013) Net global warming potential and greenhouse gas intensity in a double-cropping cereal rotation as affected by nitrogen and straw management. Biogeosciences 10:7897–7911

    Google Scholar 

  • IPCC (2007a) Intergovernmental Panel on Climate Change (IPCC), changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M (eds) Climate Change 2007: the physical science basis, contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2007b) Intergovernmental panel on climate change (IPCC), agriculture. In: Metz B, Davidson OR, Bosch PR (eds) Climate change 2007: mitigation, contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midglev PM (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 710–716

    Google Scholar 

  • Janssens IA, Freibauer A, Ciais P, Nabuurs G, Folberth G, Schlamadinger B, Hutjes RWA, Ceulemans R, Schulze E-D, Valentini R, Dolman AJ (2003) Europe’s terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions. Science 300(5625):1538–1542

    CAS  PubMed  Google Scholar 

  • Jat ML, Dagar JC, Sapkota TB, Govaerts B, Ridaura SL, Saharawat YS, Sharma RK, Tetarwal JP, Jat RK, Hobbs H, Stirling C (2016) Chapter three climate change and agriculture: adaptation strategies and mitigation opportunities for food security in South Asia and Latin America. Adv Agron 137:127–235

    Google Scholar 

  • Ju XT, Xing GX, Chen XP, Zhang SL, Zhang LA, Liu XJ, Cui ZL, Yin B, Christea P, Zhu ZL, Zhang FS (2009) Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc Natl Acad Sci 106:3041–3049

    CAS  PubMed  Google Scholar 

  • Jun L, Qiang Y, Xiaojun T, Chuanyou R, Jing W, Enmin L, Zhilin Z, Guirui Y (2006) Carbon dioxide exchange and the mechanism of environmental control in a farmland ecosystem in North China Plain. Sci China Series D 49(Suppl. II):226–240

    Google Scholar 

  • Khosa MK, Sidhu BS, Benbi DK (2011) Methane emission from rice fields in relation to management of irrigation water. J Environ Biol 32:169–172

    PubMed  Google Scholar 

  • Kim GW, Jeong ST, Kim PJ, Gwon HS (2017) Influence of nitrogen fertilization on the net ecosystem carbon budget in a temperate mono-rice paddy. Geoderma 306:58–66

    CAS  Google Scholar 

  • Kimura M, Murase J, Lu Y (2004) Carbon cycling in rice field ecosystems in the context of input, decomposition and translocation of organic materials and the fates of their end products (CO2 and CH4). Soil Biol Biochem 36(9):1399–1416

    CAS  Google Scholar 

  • Kutsch WL, Aubinet M, Buchmannc N, Smithd P, Osbornee B, Eugster W, Wattenbachd M, Schrumpff M, Schulzef ED, Tomellerif E, Ceschia E, Bernhofer C, Béziat P, Carrarai A, Di Tommasi P, Grünwald T, Jones M, Magliuloj V, Marloiel O, Moureaux C, Oliosol A, Sanzi MJ, Saunders M, Søgaard H, Ziegler W (2010) The net biome production of full crop rotations in Europe. Agric Ecosyst Environ 139:336–345

    Google Scholar 

  • Lal R (2004) Carbon emission from farm operations. Environ Int 30:981–990

    CAS  PubMed  Google Scholar 

  • Li C, Salas W, DeAngelo B, Rose S (2006) Assessing alternative for mitigating net greenhouse gas emissions and increasing yields from rice production in China over the next twenty years. J Environ Qual 35:1554–1565

    CAS  PubMed  Google Scholar 

  • Lieth H, Whittaker RH (1975) Primary productivity of the biosphere. Spring, New York

    Google Scholar 

  • Linquist B, van Groenigen KJ, Adviento-Borbe MA, Pittelkow C, Van-Kessel C (2012) An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob Change Biol 18:194–209

    Google Scholar 

  • Liu C, Wang K, Zheng X (2012) Responses of N2O and CH4 fluxes to fertilizer nitrogen addition rates in an irrigated wheat-maize cropping system in northern China. Biogeosciences 9:839–850

    CAS  Google Scholar 

  • Liu C, Yao Z, Wang K, Zheng X, Li B (2019) Net ecosystem carbon and greenhouse gas budgets in fiber and cereal cropping systems. Sci Total Environ 647:895–904

    CAS  PubMed  Google Scholar 

  • Lu F, Wang X, Han B, Ouyang Z, Duan X, Zheng H, Miao H (2009) Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China’s cropland. Glob Change Biol 15:281–305

    Google Scholar 

  • Luyssaert S, Inglima I, Jung M, Richardson A, Reichstein M, Papale D, Piao S, Schulze ED, Wingate L, Matteucci G (2007) CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob Change Biol 13:2509–2537

    Google Scholar 

  • Ma YC, Kong XW, Yang B, Zhang XL, Yan XY, Yang JC, Xiong ZQ (2013) Net global warming potential and greenhouse gas intensity of annual rice–wheat rotations with integrated soil–crop system management. Agric Ecosyst Environ 164:209–219

    Google Scholar 

  • Mandal S, Roy S, Das A, Ramkrushna GI, Lal R, Verma BC, Kumar A, Singh RK, Layek J (2015) Energy efficiency and economics of rice cultivation systems under subtropical Eastern Himalaya. Energy Sustain Dev 28:115–121

    Google Scholar 

  • Meena RS, Kumar S, Yadav GS (2020) Soil carbon sequestration in crop production. In: Meena RS (ed) Nutrient dynamics for sustaibale crop production. Springer, Singapore. https://doi.org/10.1007/978-981-13-8660-2_1

    Chapter  Google Scholar 

  • Mosier AR, Halvorson AD, Peterson GA, Robertson GP, Sherrod L (2005) Measurement of net global warming potential in three agroecosystems. Nutr Cycl Agroecosyst 72:67–76

    CAS  Google Scholar 

  • Mosier AR, Halvorson AD, Reule CA, Liu XJ (2006) Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado. J Environ Qual 35:1584–1598

    CAS  PubMed  Google Scholar 

  • Nabavi-Pelesaraei A, Abdi R, Rafiee S (2014a) Investigation of energy consumption for rice production using artificial neural networks in Guilan province, Iran. Elixir Energy Environ 70:24103–24106

    Google Scholar 

  • Nabavi-Pelesaraei A, Abdi R, Rafiee S, Taromi K (2014b) Applying data envelopment analysis approach to improve energy efficiency and reduce greenhouse gas emission of rice production. Eng Agric Environ Food 7(4):155–162

    Google Scholar 

  • Nabavi-Pelesaraei A, Rafiee S, Mohtasebi SS, Hosseinzadeh-Bandbafha H, Chau K (2017) Energy consumption enhancement and environmental life cycle assessment in paddy production using optimization techniques. J Clean Prod 162:571–586

    CAS  Google Scholar 

  • Nabavi-Pelesaraei A, Rafiee S, Mohtasebi SS, Hosseinzadeh-Bandbafha H, Chau K (2018) Integration of artificial intelligence methods and life cycle assessment to predict energy output and environmental impacts of paddy production. Sci Total Environ 631–632:1279–1294

    PubMed  Google Scholar 

  • Nabavi-Pelesaraei A, Rafiee S, Mohtasebi SS, Hosseinzadeh-Bandbafha H, Chau K (2019a) Comprehensive model of energy, environmental impacts and economic in rice milling factories by coupling adaptive neuro-fuzzy inference system and life cycle assessment. J Clean Prod 217:743–756

    Google Scholar 

  • Nabavi-Pelesaraei A, Rafiee S, Mohtasebi SS, Hosseinzadeh-Bandbafha H, Chau K (2019b) Assessment of optimized pattern in milling factories of rice production based on energy, environmental and economic objectives. Energy 169:1259–1273

    Google Scholar 

  • Nath AJ, Lal R, Sileshi GW, Das AK (2018) Managing India’s small landholder farms for food security and achieving the “4 per thousand” target. Sci Total Environ 634:1024–1033

    CAS  PubMed  Google Scholar 

  • Osborne B, Saunders M, Walmsley D, Jones M, Smith P (2010) Key questions and uncertainties associated with the assessment of the cropland greenhouse gas balance. Agric Ecosyst Environ 139:293–301

    Google Scholar 

  • Ozkan B, Akcaoz H, Karadeniz F (2004) Energy requirement and economic analysis of citrus production in Turkey. Energy Converv Manag 45:1821–1830

    Google Scholar 

  • Pan G, Li L, Wu L, Zhang X (2004) Storage and sequestration potential of topsoil organic carbon in China’s paddy soils. Glob Change Biol 10(1):79–92

    Google Scholar 

  • Pathak H (2010) Mitigating greenhouse gas and nitrogen loss with improved fertilizer management in rice: quantification and economic assessment. Nutr Cycl Agroecosyst 87:443–454

    CAS  Google Scholar 

  • Prescher A, Grünwald T, Bernhofer C (2010) Land use regulates carbon budgets in eastern Germany: from NEE to NBP. Agric For Meteorol 150:1016–1025

    Google Scholar 

  • Qin YM, Liu SW, Guo YQ, Liu Q, Zou JW (2010) Methane and nitrous oxide emissions from organic and conventional rice cropping systems in Southeast China. Biol Fertil Soils 46:825–834

    CAS  Google Scholar 

  • Running SW, Coughlan JC (1988) A general model of forest ecosystem processes for regional applications I: hydrologic balance, canopy gas exchange and primary production processes. Ecol Model 42:125–154

    CAS  Google Scholar 

  • Sainju UM, Lenssen A, Caesar-Thonthat T, Waddell J (2007) Dryland plant biomass and soil carbon and nitrogen fractions on transient land as influenced by tillage and crop rotation. Soil Tillage Res 93:452–461

    Google Scholar 

  • Sainju UM, Jabro JD, Stevens WB (2008) Soil carbon dioxide emission and carbon content as affected by irrigation, tillage, cropping system, and nitrogen fertilization. J Environ Qual 37:98–106

    CAS  PubMed  Google Scholar 

  • Schulze ED, Beck E, Müller-Hohenstein K (2005) Plant ecology. Springer, Berlin, p 702

    Google Scholar 

  • Shahan S, Jafari A, Mobli H, Rafiee S, Karimi M (2008) Energy use and economical analysis of wheat production in Iran: a case study from Ardabil province. J Agric Technol 4(1):77–88

    Google Scholar 

  • Shang QY, Yang XX, Gao C, Wu PP, Liu JJ, Xu Y, Shen QR, Zou JW, Guo SW (2010) Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: a 3-year field measurement in long-term fertilizer experiments. Glob Change Biol 17:2196–2210

    Google Scholar 

  • Singh P, Benbi DK (2018a) Soil organic carbon pool changes in relation to slope position and land-use in Indian lower Himalayas. CATENA 166:171–180

    CAS  Google Scholar 

  • Singh P, Benbi DK (2018b) Nutrient management effects on organic carbon pools in a sandy loam soil under rice-wheat cropping. Archiv Agron Soil Sci. https://doi.org/10.1080/03650340.2018.1465564

    Article  Google Scholar 

  • Singh P, Benbi DK (2020) Modeling soil organic carbon with DNDC and RothC models in different wheat based cropping systems in north-western India. Commun Soil Sci Plant Anal. https://doi.org/10.1080/00103624.2020.1751850

    Article  Google Scholar 

  • Singh P, Singh G, Sodhi GPS (2019) Energy auditing and optimization approach for improving energy efficiency of rice cultivation in south-western Punjab, India. Energy 174:269–279

    Google Scholar 

  • Singh P, Singh G, Sodhi GPS (2020) Energy and carbon footprints of wheat establishment following different rice residue management strategies vis-à-vis conventional tillage coupled with rice residue burning in north-western India. Energy 200(1):117554

    CAS  Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen HH, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes RJ, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith JU (2008) Greenhouse gas mitigation in agriculture. Philos Trans R Soc B 363:789–813

    CAS  Google Scholar 

  • Smith P, Laniganb G, Kutschc WL, Buchmannd N, Eugsterd W, Aubinete M, Ceschiaf E, Béziatf P, Yeluripatia JB, Osborneg B, Moorsh EJ, Brutf A, Wattenbacha M, Saundersg M, Jones M (2010) Measurements necessary for assessing the net ecosystem carbon budget of Croplands. Agric Ecosyst Environ 139:302–315

    Google Scholar 

  • Soussana JF, Tallec T, Blanfort V (2010) Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. Animal 4:334–350

    CAS  PubMed  Google Scholar 

  • Suyker AE, Verma SB (2012) Gross primary production and ecosystem respiration of irrigated and rainfed maize–soybean cropping systems over 8 years. Agric For Meteorol 165:12–24

    Google Scholar 

  • Swain CK, Bhattacharyya P, Singh NR, Neogi S, Sahoo RK, Nayak AK, Zhang G, Leclerc MY (2016) Net ecosystem methane and carbon dioxide exchange in relation to heat and carbon balance in lowland tropical rice. Ecol Eng 95:364–374

    Google Scholar 

  • Verma SB, Dobermann A, Cassman KG, Walters DT, Knops JM, Arkebauer TJ, Suyker AE, Burba GG, Amos B, Yang H, Ginting D, Hubbard KG, Gitelson AA, Walter-Shea EA (2005) Annual carbon dioxide exchange in irrigated and rainfed maize-based agroecosystems. Agric For Meteorol 131(1):77–96

    Google Scholar 

  • Wang Y, Hu C, Dong W, Li X, Zhang Y, Qin S, Oenema O (2015) Carbon budget of a winter-wheat and summer-maize rotation cropland in the North China Plain. Agric Ecosyst Environ 206:33–45

    Google Scholar 

  • Xie B, Zheng X, Zhou Z, Gu J, Zhu B, Chen X, Shi Y, Wang Y, Zhao Z, Liu C (2010) Effects of nitrogen fertilizer on CH4 emission from rice fields: multi-site field observations. Plant Soil 326:393–401

    CAS  Google Scholar 

  • Yadav GS, Lal R, Meena RS, Datta M, Babu S, Das A, Layek J, Saha P (2017) Energy budgeting for designing sustainable and environmentally clean/safer cropping systems for rainfed rice fallow lands in India. J Clean Prod 158:29–37

    Google Scholar 

  • Yang B, Xiong Z, Wang J, Xu X, Huang Q, Shen Q (2015) Mitigating net global warming potential and greenhouse gas intensities by substituting chemical nitrogen fertilizers with organic fertilization strategies in rice–wheat annual rotation systems in China: a 3-year field experiment. Ecol Eng 81:289–297

    Google Scholar 

  • Zhang S, Wang L (2013) Review on carbon cycling of farmland ecosystem under the context of global changes. J Agric Mech Res 35(1):4–9 (in Chinese)

    Google Scholar 

  • Zhang L, Yu D, Shi X, Weindorf DC, Zhao L, Ding W, Wang H, Pan J, Li C (2009) Simulation of global warming potential (GWP) from rice fields in the Tai-Lake region, China by coupling 1: 50,000 soil database with DNDC model. Atmos Environ 43(17):2737–2746

    CAS  Google Scholar 

  • Zhang X, Fan C, Ma Y, Liu Y, Li L, Zhou Q, Xiong Z (2014) Two approaches for net ecosystem carbon budgets and soil carbon sequestration in a rice–wheat rotation system in China. Nutr Cycl Agroecosyst 100:301–313

    CAS  Google Scholar 

  • Zheng X, Xie B, Liu C, Zhou Z, Yao Z, Wang Y, Wang Y, Yang L, Zhu J, Huang Y, Butterbach-Bahl K (2008) Quantifying net ecosystem carbon dioxide exchange of a short-term cropland with intermittent chamber measurements. Glob Biochem Cycles 22:3031

    Google Scholar 

  • Zou JW, Liu SW, Qin YM, Pan GX, Zhu D (2009) Sewage irrigation increased methane and nitrous oxide emissions from rice paddies in southeast China. Agric Ecosyst Environ 129:516–522

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Indian Council of Agricultural Research (ICAR), New Delhi, India, for supporting this research through ICAR National Professor Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pritpal Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Benbi, D.K. Nutrient management impacts on net ecosystem carbon budget and energy flow nexus in intensively cultivated cropland ecosystems of north-western India. Paddy Water Environ 18, 697–715 (2020). https://doi.org/10.1007/s10333-020-00812-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10333-020-00812-9

Keyword

Navigation