Plant diversity and composition of rice field bunds in Southeast Asia

Abstract

Which plant species can be found on rice field bunds and what are the prevailing life forms? Which plant communities occur and what are the main environmental drivers and phytogeographic patterns shaping these communities? How do species diversity and composition differ between bunds and paddies? To answer these questions, 133 vegetation relevés using the Braun-Blanquet method were collected in lowlands and uplands of Vietnam and the Philippines between 2012 and 2015. Soil samples were collected and farmers were interviewed. Properties of soil, climate, and geography were assessed, further structural parameters, landscape heterogeneity, seasonality, management and intensity of cultivation. Hierarchical UPGMA cluster analysis and NMDS ordinations were performed to visualize variation in plant community composition and the determinants. We found 302 vascular plant species, of which 94 species are red listed by the IUCN (under category “Least concern”). Therophytes and helophytes are the prevailing life forms. Six clusters of plant communities were classified, and temperature, soil acidity, land use intensity and nutrient availability were identified (according to relevance) as explanatory variables. Bunds revealed higher species richness than paddies and bunds in mountain areas were more species-rich than those in the lowlands. We conclude that the composition of bund communities provides valuable information on environmental and biogeographical conditions of the local rice landscapes, and that it is probably the best applicable and most reliable indicator of management intensity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Bambaradeniya CNB, Amerasinghe FP (2003) Biodiversity associated with the rice field agroecosystem in Asian countries: A brief review. International Water Management Institute, Colombo

    Google Scholar 

  2. Bambaradeniya CNB, Fonseka KT, Ambagahawatte CL (1998) A preliminary study of fauna and flora of a rice field in Kandy, Sri Lanka. Ceylon J Sci 25:1–22

    Google Scholar 

  3. Barrett SCH, Seaman DE (1980) The weed flora of Californian rice fields. Aquat Bot 9:351–376. https://doi.org/10.1016/0304-3770(80)90036-4

    Article  Google Scholar 

  4. Barthlott W, Mutke J, Rafiqpoor D, Kier G, Kreft H (2005) Global centers of vascular plant diversity. Nova Acta Leopold 92:61–83

    Google Scholar 

  5. Biodiversity Center of Japan, Ministry of Environment (2013) Red list of threatened plants of Japan. http://www.biodic.go.jp/english/rdb/rdb_f.html. Accessed 21 July 2016

  6. Blume H, Brümmer GW, Fleige H, Horn R, Kandeler E, Kögel-Knabner I, Kretzschmar R, Stahr K, Wilke B (2016) Scheffer/Schachtschabel soil science. Springer, Berlin

    Google Scholar 

  7. Carni A, Mucina L (1998) Vegetation of trampled soil dominated by C4 plants in Europe. J Veg Sci 9:45–56. https://doi.org/10.2307/3237222

    Article  Google Scholar 

  8. Carretero JL (1988) Rice field flora and vegetation in the provinces of Valencia and Tarragona. Collect Bot 17:113–124. https://doi.org/10.3989/collectbot.1988.v17.163

    Article  Google Scholar 

  9. Carretero JL (1989) La vegetación emergente de los arrozales europeos. An Biol 15:135–141

    Google Scholar 

  10. Cook CDK (1996) Aquatic and wetland plants of India. Oxford University Press, New York

    Google Scholar 

  11. Coronas J (1920) The climate and weather of the Philippines, 1903 to 1918. Bureau of Printing, Manila

    Google Scholar 

  12. de Bolòs O, Masclans F (1955) La vegetacion de los arrozales en la region mediterranea. Collect Bot 4:415–434

    Google Scholar 

  13. De Datta SK (1981) Principles and practices of rice production. Wiley, Singapore

    Google Scholar 

  14. Deil U (2005) A review on habitats, plant traits and vegetation of ephemeral wetlands: a global perspective. Phytocoenologia 35:533–706. https://doi.org/10.1127/0340-269X/2005/0035-0533

    Article  Google Scholar 

  15. Dierschke H (1994) Pflanzensoziologie: Grundlagen und Methoden. Ulmer, Stuttgart

    Google Scholar 

  16. Doanh Q, Tuan HD (2004) Improving indigenous technologies for sustainable land use in northern mountainous areas of Vietnam. J Mt Sci 1:270–275. https://doi.org/10.1007/BF02919331

    Article  Google Scholar 

  17. eFloras (2008) Flora of China. http://www.efloras.org. Accessed 22 Sept 2015

  18. Ellenberg H, Mueller-Dombois D (1967) A key to Raunkiaer plant life forms with revised subdivisions. [s.n.], Goettingen

  19. Fageria NK, Carvalho GD, Santos AB, Ferreira EPB, Knupp AM (2011) Chemistry of lowland rice soils and nutrient availability. Commun Soil Sci Plant Anal 42:1913–1933. https://doi.org/10.1080/00103624.2011.591467

    Article  CAS  Google Scholar 

  20. FAO (2000) Bridging the rice yield gap in the Asia-Pacific region. RAP, Bangkok

    Google Scholar 

  21. FAO (2006) Guidelines for soil description. FAO, Rome

    Google Scholar 

  22. FAO (2016a) FAOSTAT. http://faostat.fao.org/. Accessed 26 Jan 2017

  23. FAO (2016b) Rice market monitor. http://www.fao.org/economic/est/publications/rice-publications/rice-market-monitor-rmm/en/. Accessed 26 Jan 2017

  24. Fernando CH (1995) Rice fields are aquatic, semi-aquatic, terrestrial, and agricultural: a complex and questionable limnology. Trop Limnol 1:121–148

    Google Scholar 

  25. Fried O, Kühn I, Schrader J, Van Sinh Nguyen, Bergmeier E (2017) Plant diversity and community composition of rice agroecosystems in Vietnam and the Philippines. Phytocoenologia 47:49–66. https://doi.org/10.1127/phyto/2017/0123

    Article  Google Scholar 

  26. Fukamachi K, Oku H, Miyake A (2005) The relationships between the structure of paddy levees and the plant species diversity in cultural landscapes on the west side of Lake Biwa, Shiga, Japan. Landsc Ecol Eng 1:191–199. https://doi.org/10.1007/s11355-005-0019-8

    Article  Google Scholar 

  27. Galinato MI, Moody K, Piggin CM (1999) Upland rice weeds of South and Southeast Asia. International Rice Research Institute, Makati City

    Google Scholar 

  28. García PV, Benzal AV (2009) Flórula y vegetación de “Els Ullals de Na Molins” (La Albufera. Valencia). Referencia de un estado intermedio de restauración de humedales. Flora Montiberica 42:31–40

    Google Scholar 

  29. GRiSP (2013) Rice almanac. International Rice Research Institute, Los Baños

    Google Scholar 

  30. Harada J, Paisooksantivatana Y, Zungsontiporn S (1987) Weeds in the highlands of northern Thailand. National Weed Science Research Institute Project, c/o Botany and Weed Science Division, Department of Agriculture, Bangkok

  31. Harada J, Shibayama H, Morita H (1993) Weeds in the Tropics. Association for International Cooperation of Agriculture and Forestry, Tokyo

    Google Scholar 

  32. Heckman CW (1979) Rice field ecology in Northeastern Thailand: the effect of wet and dry seasons on a cultivated aquatic ecosystem. Junk, The Hague

    Google Scholar 

  33. Hill R, Pickering C (2009) Differences in resistance of three subtropical vegetation types to experimental trampling. J Environ Manag 90:1305–1312. https://doi.org/10.1016/j.jenvman.2008.07.015

    Article  Google Scholar 

  34. Ho P (1999–2003) Cayco Vietnam [An illustrated flora of Vietnam], vol 1–3. Nha xuat ban tre [Mekong Printing], Ho Chi Minh City

  35. Husson O, Castella J, Ha Dinh Tuan, Naudin K (2001) Agronomic diagnosis and identification of factors limiting upland rice yield in mountainous areas of Northern Vietnam. SAM Paper Series 2, Vietnam Agricultural Science Institute, Hanoi

  36. Hyvönen T, Salonen J (2002) Weed species diversity and community composition in cropping practices at two intensity levels: a six-year experiment. Plant Ecol 159:73–81. https://doi.org/10.1023/A:1015580722191

    Article  Google Scholar 

  37. Ichihara M, Matsuno K, Inagaki H, Saiki C, Mizumoto S, Yamaguchi S, Yamashita M, Sawada H (2015) Creation of paddy levees to enhance the ecosystem service of weed seed predation by crickets. Landsc Ecol Eng 11:227–233. https://doi.org/10.1007/s11355-014-0254-y

    Article  Google Scholar 

  38. Iiyama N, Kamada M, Nakagoshi N (2005) Ecological and social evaluation of landscape in a rural area with terraced paddies in southwestern Japan. Landsc Urban Plan 70:301–313. https://doi.org/10.1016/j.landurbplan.2003.10.024

    Article  Google Scholar 

  39. Inkscape Team (2015) Inkscape, version 0.91. Retrieved from http://www.inkscape.org

  40. IRRI (1983) Proceedings of the conference on weed control in rice. International Rice Research Institute, Los Baños

    Google Scholar 

  41. IUCN (2015) The IUCN red list of threatened species, version 2015-3. http://www.iucnredlist.org. Accessed 9 Sept 2015

  42. Kawano N, Kawano K, Ohsawa M (2009) Floristic diversity and the richness of locally endangered plant species of semi-natural grasslands under different management practices, southern Kyushu, Japan. Plant Ecol Divers 2:277–288. https://doi.org/10.1080/17550870903525511

    Article  Google Scholar 

  43. Kim YM (2001) Untersuchung von Flora, Vegetation und Biotoptypen in der dörflichen Kulturlandschaft Koreas. Dissertation, TU Berlin

  44. Kim JW, Nam HK (1998) Syntaxonomical and synecological characteristic of rice field vegetation. Korean J Ecol 21:203–215

    Google Scholar 

  45. Klotzbücher T, Marxen A, Vetterlein D, Schneiker J, Türke M, Van Sinh Nguyen, Manh NH, Chien HV, Marquez L, Villareal S, Bustamante JV, Jahn R (2014) Plant-available silicon in paddy soils as a key factor for sustainable rice production in Southeast Asia. Basic Appl Ecol 16:665–673. https://doi.org/10.1016/j.baae.2014.08.002

    Article  Google Scholar 

  46. Kolbek J, Dostálek J, Jarolímek I (1996) The vegetation of rice fields in North Korea and its relation to South Korea and Japan. Fragm Florist Geobot 41:612–637

    Google Scholar 

  47. Kosaka Y, Xayvongsa L, Vilayphone A, Chanthavong H, Takeda S, Kato M (2013) Wild edible herbs in paddy fields and their sale in a mixture in Houaphan Province, the Lao People’s Democratic Republic. Econ Bot 67:335–349. https://doi.org/10.1007/s12231-013-9251-6

    Article  Google Scholar 

  48. Koyanagi TF, Yamada S, Yonezawa K, Kitagawa Y, Ichikawa K (2014) Plant species richness and composition under different disturbance regimes in marginal grasslands of a Japanese terraced paddy field landscape. Appl Veg Sci 17:636–644. https://doi.org/10.1111/avsc.12100

    Article  Google Scholar 

  49. Kumalasari NR (2014) Diversity of rice weeds vegetation and its potential as local forage resource in Java, Indonesia. Dissertation, Georg-August-Universität Göttingen

  50. Kumalasari NR, Bergmeier E (2014) Effects of surrounding crop and semi-natural vegetation on the plant diversity of paddy fields. Agric Food Secur 3:15. https://doi.org/10.1186/2048-7010-3-15

    Article  Google Scholar 

  51. Le KB (2007) Thuc vat chi viet nam [Flora of Vietnam], vol 7: Ho cuc - Asteraceae Dumort. Science and Technics Publishing House, Hanoi

  52. Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280. https://doi.org/10.1007/s004420100716

    Article  PubMed  Google Scholar 

  53. Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K (2015) cluster: cluster analysis basics, version 2.0.3. Retrieved from https://cran.r-project.org/package=cluster

  54. Matsumura T, Takeda Y (2010) Relationship between species richness and spatial and temporal distance from seed source in semi-natural grassland. Appl Veg Sci 13:336–345. https://doi.org/10.1111/j.1654-109X.2010.01075.x

    Article  Google Scholar 

  55. Minchin PR (1987) An evaluation of the relative robustness of techniques for ecological ordination. In: Prentice IC, van der Maarel E (eds) Theory and models in vegetation science. Springer, Dordrecht, pp 89–107

    Google Scholar 

  56. Miyawaki A (1960) Pflanzensoziologische Untersuchungen über Reisfeld-Vegetation auf den Japanischen Inseln mit vergleichender Betrachtung Mitteleuropas. Plant Ecol 9:345–402. https://doi.org/10.1007/BF00299997

    Article  Google Scholar 

  57. Miyawaki A (1969) Systematik der Ackerunkrautgesellschaften Japans. Vegetatio 19:47–59. https://doi.org/10.1007/BF00259003

    Article  Google Scholar 

  58. Miyawaki A (1988) Die Veränderung innerhalb der japanischen anthropogenen Vegetation. Flora 180:191–201

    Article  Google Scholar 

  59. Moody K (1989) Weeds reported in rice in South and Southeast Asia. International Rice Research Institute, Los Baños

    Google Scholar 

  60. Moody K, Drost DC (1983) The role of cropping systems on weeds in rice. In: IRRI (ed) Proceedings of the conference on weed control in rice, International Rice Research Institute, Los Baños, pp 73–88

  61. Mucina L, Dostálek J, Jarolímek I, Kolbek J, Ostrý I (1991) Plant communities of trampled habitats in North Korea. J Veg Sci 2:667–678. https://doi.org/10.2307/3236177

    Article  Google Scholar 

  62. Mucina L, Bültmann H, Dierßen K, Theurillat J, Raus T, Čarni A, Šumberová K, Willner W, Dengler J, García RG, Chytrý M, Hájek M, Di Pietro R, Iakushenko D, Pallas J, Daniëls FJA, Bergmeier E, Santos Guerra A, Ermakov N, Valachovič M, Schaminée JHJ, Lysenko T, Didukh YP, Pignatti S, Rodwell JS, Capelo J, Weber HE, Solomeshch A, Dimopoulos P, Aguiar C, Hennekens SM, Tichý L (2016) Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Appl Veg Sci 19:3–264. https://doi.org/10.1111/avsc.12257

    Article  Google Scholar 

  63. Naito R, Sakai M, Natuhara Y, Morimoto Y, Shibata S (2013) Microhabitat use by Hyla japonica and Pelophylax porosa brevipoda at levees in rice paddy areas of Japan. Zool Sci 30:386–391. https://doi.org/10.2108/zsj.30.386

    Article  PubMed  Google Scholar 

  64. Nemoto M, Otsuka H (2014) Influence of farming system on the floristic composition of paddy landscapes: a case study in a rural hilly zone in Zhejiang province, China. Landsc Ecol Eng 10:173–180. https://doi.org/10.1007/s11355-011-0150-7

    Article  Google Scholar 

  65. Nguyen KK (2002) Thuc vat chi viet nam [Flora of Vietnam], vol 3: Ho coi - Cyperaceae Juss. Science and Technics Publishing House, Hanoi

  66. Nguyen HD, Nguyen TD (2007) Thuc vat chi viet nam [Flora of Vietnam], vol 11: 1. Bo rong mo - Fucales Kylin, 2. Ho rau ram - Polygonaceae Juss. Science and Technics Publishing House, Hanoi

  67. Nowak S, Nowak A, Nobis M (2013) Weed communities of rice fields in the central Pamir Alai Mountains (Tajikistan, Middle Asia). Phytocoenologia 43:101–126. https://doi.org/10.1127/0340-269X/2013/0043-0552

    Article  Google Scholar 

  68. Nowak A, Nowak S, Nobis M (2015) First insights into weed communities of rice agrocoenoses in southern Thailand. Phytocoenologia 45:157–174. https://doi.org/10.1127/phyto/2015/0017

    Article  Google Scholar 

  69. Nowak A, Nowak S, Nobis M (2016) Spring weed communities of rice agrocoenoses in central Nepal. Acta Bot Croat 75:99–108. https://doi.org/10.1515/botcro-2016-0004

    Article  CAS  Google Scholar 

  70. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2015) vegan: community ecology package, version 2.3-0. Retrieved from http://CRAN.R-project.org/package=vegan

  71. Otsuka H, Nemoto M, Masuda S (2006) The floristic composition of paddy fields and their levees under different weed management techniques. J Weed Sci Technol 51:229–238. https://doi.org/10.3719/weed.51.229 (in Japanese)

    Article  Google Scholar 

  72. Pancho JV, Obien SR (1995) Manual of ricefield weeds in the Philippines. Philippine Rice Research Institute, Muñoz

    Google Scholar 

  73. Parras JMM, Lorca MP (1993) Vegetación de los arrozales de las marismas del Guadalquivir. Lagascalia 17:21–35

    Google Scholar 

  74. Paudel MN (2011) Rice (Oryza sativa L) cultivation in the highest elevation of the world. Agron J Nepal 2:31–41

    Google Scholar 

  75. Piccoli F, Gerdol R (1981) Rice-field weed communities in Ferrara Province (northern Italy). Aquat Bot 10:317–328. https://doi.org/10.1016/0304-3770(81)90030-9

    Article  Google Scholar 

  76. Pinke G, Csiky J, Mesterházy A, Tari L, Pál RW, Botta-Dukát Z, Czúcz B (2014) The impact of management on weeds and aquatic plant communities in Hungarian rice crops. Weed Res 54:388–397. https://doi.org/10.1111/wre.12084

    Article  Google Scholar 

  77. Pretty JN (2002) Agri-culture: reconnecting people, land and nature. Earthscan Publications Ltd, London

    Google Scholar 

  78. Pyšek P, Lepš J (1991) Response of a weed community to nitrogen fertilization: a multivariate analysis. J Veg Sci 2:237–244. https://doi.org/10.2307/3235956

    Article  Google Scholar 

  79. R Core Team (2016) R: a language and environment for statistical computing, version 3.3.2. Retrieved from https://cran.r-project.org/

  80. Raju RA, Reddy MN, Gangwar B (2001) Nursery fertilization of rice (Oryza sativa) with native weed vegetation. Indian J Agron 1:94–100

    Google Scholar 

  81. Reichelt G, Wilmanns O (1973) Vegetationsgeographie. Das geographische Seminar: Praktische Arbeitsweisen. Westermann, Braunschweig

    Google Scholar 

  82. Rivas-Martinez S, Rivas-Saenz S (1996–2009) Worldwide bioclimatic classification system. http://www.globalbioclimatics.org. Accessed 22 Sept 2015

  83. Roder W (1997) Slash-and-burn rice systems in transition: challenges for agricultural development in the hills of Northern Laos. Mt Res Dev 17:1–10. https://doi.org/10.2307/3673908

    Article  Google Scholar 

  84. Roder W, Phengchanh S, Keobulapha B (1997) Weeds in slash-and-burn rice fields in northern Laos. Weed Res 37:111–119. https://doi.org/10.1046/j.1365-3180.1996.d01-6.x

    Article  Google Scholar 

  85. Santamaría L (2002) Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecol 23:137–154. https://doi.org/10.1016/S1146-609X(02)01146-3

    Article  Google Scholar 

  86. Settele J, Kühn I, Klotz S, Arida G, Bergmeier E, Burkhard B, Bustamante JV, Dao Thanh Truong, Escalada M, Görg C, Grescho V, Ho Van Chien, Heong KL, Hirneisen N, Hotes S, Jahn R, Klotzbücher T, Marion G, Marquez L, Marxen A, Moritz R, Müller F, Nguyen Van Sinh, Ott J, Penev L, Rodriguez-Labajos B, Schädler M, Scheu S, Seppelt R, Stoev P, Tscharntke T, Tekken V, Thonicke K, Vetterlein D, Vidal S, Villareal S, Weisser WW, Westphal C, Wiemers M, Spangenberg JH (2013). Kulturlandschaftsforschung in Südostasien – das LEGATO-Projekt. Berichte. Geographie und Landeskunde 87(3):315–323.

    Google Scholar 

  87. Settele J, Spangenberg JH, Heong KL, Burkhard B, Bustamante JV, Cabbigat J, Chien HV, Escalada M, Grescho V, Le Hai H, Harpke A, Horgan FG, Hotes S, Jahn R, Kühn I, Marquez L, Schädler M, Tekken V, Vetterlein D, Villareal S, Westphal C, Wiemers M (2015) Agricultural landscapes and ecosystem services in South-East Asia: the LEGATO-project. Basic Appl Ecol 16:661–664. https://doi.org/10.1016/j.baae.2015.10.003

    Article  Google Scholar 

  88. Smith RJ Jr. (1983) Weeds of major economic importance in rice and yield losses due to weed competition. In: IRRI (ed) Proceedings of the conference on weed control in rice, International Rice Research Institute, Los Baños, pp 19–36

  89. Soerjani M, Kostermans AJGH, Tjitrosoepomo G (1987) Weeds of rice in Indonesia. Balai Pustaka, Jakarta

    Google Scholar 

  90. Sterling EJ, Hurley MM, Le MD, Powzyk JA (2008) Vietnam: a natural history. Yale University Press, New Haven

    Google Scholar 

  91. Tallon G (1958) La flore des rizieres de la region d’arles et ses repercussions sur la culture du riz. Vegetatio 8:20–42. https://doi.org/10.1007/BF00242417

    Article  Google Scholar 

  92. The Plant List (2013) Version 1.1. http://www.theplantlist.org/2013. Accessed 6 Mar 2016

  93. Tichý L (2002) JUICE, software for vegetation classification. J Veg Sci 13:451–453. https://doi.org/10.1111/j.1654-1103.2002.tb02069.x

    Article  Google Scholar 

  94. Tsiripidis I, Bergmeier E, Fotiadis G, Dimopoulos P (2009) A new algorithm for the determination of differential taxa. J Veg Sci 20:233–240. https://doi.org/10.1111/j.1654-1103.2009.05273.x

    Article  Google Scholar 

  95. Turki Z, Sheded M (2002) Some observations on the weed flora of rice fields in the Nile Delta, Egypt. Feddes Repert 113:394–403. https://doi.org/10.1002/1522-239X(200210)113:5/6<394:AID-FEDR394>3.0.CO;2-0

    Article  Google Scholar 

  96. University of East Anglia Climatic Research Unit, Jones PD, Harris I (2008) Climatic research unit (CRU) time-series datasets of variations in climate with variations in other phenomena. http://catalogue.ceda.ac.uk/uuid/3f8944800cc48e1cbc29a5ee12d8542d

  97. Vân NK (2016) Climatic zoning of the Bắc Bộ mountainous provinces and Western Thanh Nghệ. Vietnam J Earth Sci 37:204–212 (in Vietnamese)

    Google Scholar 

  98. Way MJ, Heong KL (1994) The role of biodiversity in the dynamics and management of insect pests of tropical irrigated rice: a review. Bull Entomol Res 84:567–587. https://doi.org/10.1017/S000748530003282X

    Article  Google Scholar 

  99. Westphal C, Vidal S, Horgan FG, Gurr GM, Escalada M, Chien HV, Tscharntke T, Heong KL, Settele J (2015) Promoting multiple ecosystem services with flower strips and participatory approaches in rice production landscapes. Basic Appl Ecol 16:681–689. https://doi.org/10.1016/j.baae.2015.10.004

    Article  Google Scholar 

  100. Wittig R, Becker U, Ataholo M (2011) Weed communities of arable fields in the Sudanian and the Sahelian zone of West Africa. Phytocoenologia 41:107–164. https://doi.org/10.1127/0340-269X/2011/0041-0457

    Article  Google Scholar 

  101. Yasuda M, Takeda A, Tabuchi K, Yasuda T, Watanabe T (2013) Effects of Japanese rice field boundary vegetation on Stenotus rubrovittatus (Hemiptera: Miridae) abundance. Appl Entomol Zool 48:289–294. https://doi.org/10.1007/s13355-013-0187-1

    Article  Google Scholar 

  102. Yorks TP, West NE, Mueller RJ, Warren SD (1997) Toleration of traffic by vegetation: life form conclusions and summary extracts from a comprehensive data base. Environ Manag 21:121–131. https://doi.org/10.1007/s002679900011

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Fanny Langerwisch, Aline Nowak, Sylvia (Bong) Villareal, Jesus V. Bustamante, Leonardo Marquez, Manh Hung Nguyen, Ingrid Ostermeyer, Sabine Großmann, Alexander Harpke, Volker Grescho, Catrin Westphal and Josef Settele for their support. The work has been funded in the frame of the LEGATO project (http://www.legato-project.net/), which is part of the BMBF (German Federal Ministry of Education and Research) Framework Programme Research for Sustainable Development (FONA, FKZ: 01LL0917A).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Oliver Fried.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fried, O., Kühn, I., Schrader, J. et al. Plant diversity and composition of rice field bunds in Southeast Asia. Paddy Water Environ 16, 359–378 (2018). https://doi.org/10.1007/s10333-018-0657-8

Download citation

Keywords

  • Agroecosystems
  • Oryzetea sativae
  • Philippines
  • Species diversity
  • Vietnam
  • Weed communities